Acceso



Registro de usuarios
Contáctenos
Teoría
Resistencias en serie y en paralelo

Es posible que en multitud de ocasiones hayas oído las expresiones "serie" y "paralelo" al hablar sobre determinados circuitos y/o componentes eléctricos o electrónicos. De hecho, en algunos de los artículos publicados en nuestro blog hemos mencionado alguna vez estos vocablos. Pero... ¿sabes exactamente que significan?. ¿Puedes distinguir cuando un condensador o una resistencia están conectados en paralelo o en serie?. ¿Que diferencias existen entre estos dos tipos de conexiones eléctricas?.

La verdad es que hemos estado tan ocupados hablando de la transmisión y recepción de radio, que no le hemos prestado casi ninguna atención a algo tan fundamental como son los circuitos serie y paralelo. A partir del presente artículo y en los que siguen, vamos a aprender todo lo relacionado con este tema.

En principio debes saber que cualquier componente electrónico puede conectarse de una o de otra manera, según nos interese, para conseguir un determinado propósito. Y según sea el tipo de conexión, el comportamiento de dicho componente será uno o será otro. A veces solo es posible un solo tipo de conexionado, ya que podría suceder que cualquier otro tipo de conexión fuese incompatible con el circuito que tenemos entre manos. Toda la información la tienes a continuación.

Leer más...
Otros Temas Interesantes
Noticias
Revista 27 MHz - Fascículo 9

Fascículo Nº 9 de la revista "27 MHz" dedicada a la CB (Banda Ciudadana).

Leer más...
Radioaficionados
Montar una antena de móvil (II)

Continuamos con el montaje de nuestra antena de móvil. En el artículo anterior vimos la necesidad de que la antena de móvil disponga de un buen plano de tierra ya que de lo contrario tendremos muchos problemas de desadaptación y por lo tanto la relación de ondas estacionarias (ROE) se nos va a disparar. Hemos aprendido que, si no tenemos un buen plano de tierra tendremos que "crear" uno incorporandole a la parte interior del techo o capó del vehículo una superficie metálica de 30 x 30 centímetros o más (sirve por ejemplo una chapa de aluminio) y con las uñas de la "araña" de la base de la antena bien hundida en ella para lograr un contacto eléctrico adecuado.

Pero queda aún por aclarar algunos detalles de la instalación si queremos que nuestro equipo funcione de la mejor manera posible. ¿Que haremos si aparece ruido del motor? ¿Como puedo anular o reducir ese infernal ruido que se produce al arrancar y que aumenta conforme pisamos el acelerador? ¿Puedo conectar la alimentación de la emisora a la toma de mechero del vehículo? ¿Como ajusto la antena y le reduzco la relación de ondas estacionarias (ROE) al sistema? ¿Tengo que cortar necesariamente la varilla de la antena para que funcione mejor? ¿Es cierto que cortando (o añadiendo) cable coaxial puedo ajustar la ROE? Todo esto y más en el siguiente artículo.

Leer más...
Miscelanea
Preamplificador para guitarra eléctrica

¿Te gusta tocar la guitarra eléctrica?. Es posible que hasta seas el afortunado poseedor de una de ellas. Sin embargo, quizás no tengas el equipo de sonido adecuado para oirla con la suficiente potencia y calidad.

Esto último lo decimos porque la mayoría de amplificadores y equipos de audio domésticos del mercado no disponen de una entrada convenientemente adaptada a las características del sonido entregado por este instrumento.

Efectivamente, es habitual encontrar en los amplificadores, e incluso en muchas mesas de mezcla, entradas tipo "AUX", "LINE", "CD", "TUNER" o "PHONO", pero pocos son los que tienen una entrada que indique "GUITAR".

Sabedores de esto, hemos pensado que a muchos de vosotros os interesaría fabricaros un pequeño preamplificador, de funcionamiento seguro y con una elevada calidad, que intercalado entre una entrada auxiliar y el mencionado instrumento os permitirá elevar la señal de este último y aplicarla entonces al equipo del que dispongáis para que el sonido en los altavoces tenga el nivel adecuado.

Os presentamos un circuito que con solo dos transistores BJT, seis resistencias y cinco condensadores os permitirá conseguir este objetivo.

¿Por qué no clicas en "Leer completo..." y compruebas la sencillez del dispositivo?.

Leer más...
Práctica
Cálculo de circuitos con diodos LED

Casi todo el mundo sabe de que se trata cuando se habla de diodos LED, esos pequeños componentes electrónicos que tienen la facultad de iluminarse cuando son atravesados por una corriente eléctrica. Además de que algunos modelos pueden llegar a desarrollar un considerable nivel lumínico el gasto energético que ocasionan es muy pequeño, por lo que en la actualidad ya han aparecido infinidad de lámparas domésticas basadas en ellos para casi todo tipo de aplicaciones.

Sin embargo, y centrándonos en los diodos LED estándar de 3 y de 5 milímetros usados en electrónica, muchos son los que se preguntan como se conectan a una pila o a una fuente de alimentación, quizás para usarlo como testigo de funcionamiento de algún equipo, o para hacer algún trabajo manual del colegio.

Hemos oido comentarios de todo tipo al respecto. Algunos dicen que el LED se conecta a la pila sin más, ya que piensan que funcionan con un determinado voltaje, algo parecido a las lamparitas de las linternas. Otros piensan que hay que poner dos o tres diodos más en serie, porque de lo contrario pueden "fundirse". Algunos no concretan y dicen que además del diodo LED y la pila o batería, el circuito debe de incorporar algún otro componente que lo proteja. ¿Que crees tu?.

El presente artículo tratará de arrojar luz sobre este tema, el cual en muchas ocasiones no está claro en la mente de algunos.

Leer más...
Teoría
Las ondas (II)

Cuando hemos hablado del movimiento ondulatorio producido por la piedra que cae en el estanque de aguas tranquilas no hemos ahondado demasiado en su mecánica ni en sus peculiaridades. El estudio de tales ondas puede darnos muchas ideas y proporcionarnos algunos conocimientos relacionados con el resto de ondas, incluidas las ondas electromagnéticas utilizadas en las transmisiones de radio. Para un observador poco experimentado, las ondas producidas por la piedra al caer no son mas que unas pocas circunferencias que se dibujan en el agua y que se alejan del punto en donde cayó el pedrusco, aumentando progresivamente de diámetro y disminuyendo de intensidad. Sin embargo, hay mucha más información implícita en esas circunferencias de la que se ve a simple vista, solo que debemos conocer la manera de extraerla para así poder asimilarla.

Una vez dicho esto surgen algunas preguntas relacionadas con lo expuesto hasta el momento. ¿Que métodos podemos utilizar para conocer estas ondas mas a fondo? ¿Que podemos aprender de ellas que aplique también a los demás tipos de ondas? ¿Cuales son sus características principales? Todas las respuestas vienen a continuación.

Leer más...
Noticias
Versión 1.03 del calculador para Ebay

Os presentamos una versión mejorada del calculador de precios para Ebay. En esta ocasión hemos incorporado la opción para poder calcular adecuadamente los precios cuando la publicación de los anuncios es gratis, ya que como sabeis, Ebay da a los particulares la posibilidad de ahorrarse esa comisión en los primeros 25 anuncios en formato ¡Compralo YA! y los primeros 75 anuncios en formato subasta de cada mes.

Leer más...

El receptor elemental (IV)

Tenemos nuestro receptor elemental casi terminado. Con lo desacrrollado hasta ahora ya podemos oir emisoras suficientemente cercanas y potentes, pero necesitamos más. Necesitamos ganar algo de sensibilidad además de poder "seleccionar" la emisora que queramos escuchar y desechar las que no nos interesen. Esa es precisamente la función que debe realizar el selector. Gracias a este circuito podremos seleccionar la emisora que deseemos, sintonizando la frecuencia de su señal.

Para conseguir diferenciar y seleccionar una señal de RF de entre las demás hemos de recurrir al llamado "circuito resonante paralelo", compuesto por una bobina y un condensador conectados como podemos ver en la figura. Ya sabemos lo que es y como actúa básicamente un solenoide o bobina, pero aún no hemos dicho nada de los condensadores. Su estudio es completamente necesario para entender el funcionamiento del selector, aunque su participación en los circuitos electrónicos no se limita solo a esta faceta.

Al ser uno de los componentes electrónicos mas empleados, sobre todo en circuitos de radio, necesitamos imperiosamente conocer como funcionan, aunque solo sea superficialmente. Una vez que tengamos claro este punto podremos acometer el estudio de los circuitos resonantes, pieza clave del selector.

Cualquiera que tenga conocimientos de electrónica más o menos profundos es sabedor de un hecho particular que ocurre cuando varía el voltaje en un circuito. En la mayoría de ellos existe algo que se opone a estas variaciones de tensión. Esta oposición es conocida con el nombre de CAPACIDAD o CAPACITANCIA y, aunque no podemos verla, el efecto que produce es palpable en un circuito en cuanto modificamos el voltaje.

Dicho de otra manera, cuando bajamos el voltaje en un circuito la capacidad propia de dicho circuito intenta impedir esa bajada y tiende a mantener la tensión, y cuando subimos el voltaje la capacidad se opone a dicha subida y procura conservar el valor original de la tensión.

Después de decir esto es fácil suponer que en los circuitos que trabajan con corrientes continuas, el efecto capacitivo es solo apreciable en los momentos en que se conecta y se desconecta la tensión. En los circuitos que trabajan con corrientes alternas sin embargo, al estar variando la tensión constantemente a lo largo del tiempo, el efecto de la capacidad se deja notar de forma constante.

La capacidad existe en los circuitos electrónicos porque algunos de sus elementos son capaces de "almacenar cargas eléctricas". Estos tienen la propiedad de "cargarse eléctricamente" y esta carga eléctrica almacenada en ellos produce el efecto citado anteriormente.

EL CONDENSADOR
El nivel de capacidad inherente de un circuito va a depender de como esté construido y de los componentes electrónicos que lo implementen.

A veces interesa que un determinado circuito electrónico posea una capacidad relativamente alta para así evitar las variaciones de voltaje. Esto se consigue mediante los llamados CONDENSADORES o CAPACITORES, que son componentes electrónicos especializados en este aspecto, los cuales se fabrican con una amplia gama de valores capacitivos y se aprovechan, entre otros usos como veremos más adelante, para colocarlos estratégicamente en aquellos puntos donde nos interese que las variaciones de tensión sean mínimas.

Básicamente, podemos decir que un condensador no es más que un par de placas metálicas enfrentadas entre sí llamadas "armaduras", las cuales están casi pegadas la una de la otra pero sin llegar a tocarse, y entre las que existe un medio aislante llamado "dieléctrico", como puede ser por ejemplo aire, mica, poliestireno, etc...

Los condensadores tienen la propiedad de cargarse eléctricamente cuando le aplicamos una tensión a sus bornes, y esta carga eléctrica queda almacenada o "condensada" en ellos durante cierto tiempo después de desconectar la fuente de energía. La capacidad de un condensador depende de diferentes factores que vamos a estudiar a continuación. Puedes ver algunos de los símbolos usados para representar este componente en la ilustración de arriba.

COMPORTAMIENTO EN CORRIENTE CONTINUA
Estudiemos lo que ocurre con la corriente y la tensión en un circuito con una pila, un interruptor y un condensador.

En el momento en que conectamos el interruptor la diferencia de potencial de nuestra pila se hace notar inmediatamente en las armaduras del condensador. Debido a la proximidad mutua de dichas armaduras, la placa del condensador que está conectada al polo positivo de la pila atrae a los electrones de la otra hacia sí, aunque lógicamente no pueden abandonar su armadura y atravesar el dieléctrico, y la conectada al polo negativo de la pila repele a los electrones de la que tiene enfrente. Por lo tanto, en el momento de conectar el interruptor se crea dentro del condensador una fuerza de atracción-repulsión.

Esta fuerza de atracción-repulsión en las entrañas del condensador hace que se establezca una corriente eléctrica en el circuito, corriente que "extrae" electrones de la armadura conectada al polo positivo de la pila y, circulando a través de la propia pila, los "introduce" en la armadura que está conectada al polo negativo.

Nota que en ningún momento circula corriente alguna por el interior del condensador a través de su dieléctrico, sino que solo lo hace por el circuito exterior. Una armadura cede electrones al polo positivo de la pila y la otra los recoge del polo negativo. Se va produciendo entonces un defecto de electrones en una de las placas y un exceso en la otra.

El condensador va adquiriendo una d.d.p. entre sus placas cuyo sentido es opuesto al de la pila. Cuando esta d.d.p. llega a ser del mismo valor que la que tiene la pila ambas quedan compensadas y entonces la corriente deja de fluir y para. Decimos entonces que el condensador se ha cargado.

Una de las placas ha quedado con carga negativa pués tiene un exceso de electrones, y la otra ha acabado con carga positiva pués sufre un defecto de electrones. Entre las armaduras del condensador se establece lo que se llama un "campo eléctrico".

Si en estas condiciones abrimos el interruptor, el condensador permanecerá cargado, ya que hemos interrumpido el circuito y esa carga que posee no puede circular a través del dieléctrico el cual como hemos dicho está fabricado de material aislante (en este ejemplo hemos considerado que el dieléctrico es aire). Teóricamente el condensador jamás perderá esa carga, aunque como sabemos eso no es posible al no existir un material aislante perfecto con que fabricar dicho dieléctrico.

Con esto hemos podido apreciar algo importante:

En un circuito eléctrico en el que exista un condensador conectado a una fuente de energía eléctrica de corriente continua, la corriente a través de ese circuito solo circulará durante el tiempo necesario para cargar el condensador

Si en dicho circuito tuviéramos intercalado un amperímetro, veríamos que dicho instrumento señalaría la máxima intensidad de corriente justo en el instante en que cerramos el interruptor. Esa corriente iría disminuyendo paulatinamente conforme aumentara la tensión entre las placas del condensador.

En el momento en que esa tensión se igualara a la de la pila, el instrumento dejaría de indicar el paso de corriente alguna, ya que la tensión adquirida por el condensador compensaría la tensión de la pila y esto haría desaparecer la fuerza de atracción-repulsión que mencionamos anteriormente generada en el interior del condensador por la pila. Ahora lo que si existe en el interior del condensador es lo que hemos quedado en llamar un "campo eléctrico", generado por la carga que el condensador ha obtenido de la pila.

Para no hacer excesivamente largo este artículo vamos a parar aquí. En el próximo hablaremos de como reacciona un condensador cuando se le somete a la acción de una corriente alterna, lo cual nos interesa muchísimo para conocer el funcionamiento de los circuitos resonantes, los cuales funcionan con este tipo de corrientes. Además, en otros artículos, daremos información más completa sobre los condensadores y sobre los dieléctricos. Adelantándonos un poco, deciros que la capacidad de un condensador puede aumentar bastante cuando usamos un dieléctrico distinto al aire. Veremos el porqué esto es así. Hasta la próxima, nos vemos aquí en Radioelectronica.es, tu punto de encuentro.

 
C O M E N T A R I O S   
condensadores

#1 miguel » 07-06-2015 00:24

Cómo reacciona un condensador en relación a la variación de voltaje?

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.