Acceso



Registro de usuarios
Contáctenos
Teoría
El Alfa y la Beta del transistor BJT

¿Que aficionado a la electrónica no ha oido hablar alguna vez de la "Beta" (β) de un transistor?. Para algunos quizás el término "hFE" les será más conocido que el anteriormente mencionado, aunque básicamente son la misma cosa.

Otro parámetro del transistor posiblemente menos conocido y del que suele hablarse más escasamente, aunque ambos están intimamente relacionados como vamos a ver en la última sección de este artículo, es el llamado "Alfa" (α), también denominado "factor de mérito".

Sin embargo, oir hablar a menudo de algo y saber exactamente de que se trata son dos asuntos muy diferentes ¿no te parece?.

Sabemos que en la red pueden encontrarse miles de páginas que hablan sobre este tema. No obstante, en muchas de ellas solo pueden leerse textos "copy & paste" procedentes de libros técnicos, la mayoría de veces áridos, pesados de leer y difíciles de asimilar. En otras, la información no está completa o contiene errores que desorientan y confunden al lector.

Con el presente artículo queremos hacer llegar esta información a nuestros visitantes por una parte de forma amena y sin complicaciones, y por otra sumergiéndonos matematicamente en la relación que une a los dos parámetros mencionados para aquellos que les guste profundizar en estos temas ¿Te subes a este carro?.

Leer más...
Otros Temas Interesantes
Noticias
AFHA - Electricidad Teórico Práctica - Tomo 6

Tomo 6 del curso de Electricidad Teórico Práctica de AFHA.

Leer más...
Radioaficionados
Medidor de campo sencillo

Estamos seguros de que, si eres radioaficionado desde hace cierto tiempo, alguna que otra vez te habrás visto en la necesidad de ajustar algún walkie, sea de CB o de cualquier otra frecuencia.

El montaje que presentamos hoy va a servirte de mucho, ya que permite detectar el campo eléctromagnético de una antena cuando se sitúa en sus inmediaciones. En realidad no solo sirve para "ajustar", sino que también te será de utilidad para "comprobar".

Efectivamente, con este pequeño instrumento tendrás la posibilidad de saber de forma inmediata si un walkie, o también una emisora, está emitiendo de forma adecuada, es decir, con la potencia correcta.

Una vez que tengas calibrado el medidor, sabrás con relativa exactitud si un determinado equipo necesita o no un ajuste en sus pasos de RF, y en caso necesario te ayudará a llevarlo a cabo.

Con unas pequeñísimas dimensiones, este circuito puede caber perfectamente en un receptáculo del tamaño de una cajetilla de cigarrillos (no fumes, que es perjudicial para tu salud). Ahora tienes la posibilidad de hacerte de manera muy sencilla con este práctico instrumento, imprescindible para cualquier radioaficionado que se precie.

Leer más...
Miscelanea
Luz trasera permanente para bicicleta sin pilas

¿Eres de los que les gusta pedalear?. Si es así, es muy probable que cuando te subes a la bicicleta quieras que tu seguridad no corra peligro.

Algo que te puede ayudar mucho en este sentido, y que no debería faltar nunca en el equipo de un ciclista, es una luz trasera o piloto que sea visible a muchos metros de distancia.

Dicho dispositivo no debería depender del nivel de carga de unas pilas o unas baterías sino que ha de ser un sistema autónomo e independiente, que se ponga en marcha y se ilumine de manera automática en cuanto se inicie la marcha, indicando a los demás nuestra presencia en la carretera.

Pero además, este piloto debería seguir iluminado aunque detuviéramos nuestra bicicleta y mantener la luz indicadora de nuestra posición sin necesidad de continuar pedaleando. Insistimos, todo ello sin usar pilas ni baterías.

Te presentamos en este artículo un sistema de iluminación trasera para bicicletas sin mantenimiento de ningún tipo, del cual no tendrás que preocuparte nunca más ya que estará siempre listo en el momento en que subas a tu vehículo y continuará dando servicio cuando te pares. ¿Te interesa?.

Leer más...
Práctica
Soldador de temperatura controlada económico

Si es la primera vez que vas a comprarte un soldador es muy probable que te encuentres en una disyuntiva. En primer lugar, no tienes ni idea a que tipo de trabajos vas a enfrentarte y por ese motivo no te decides por una punta determinada.

Después está el tema de la potencia necesaria para el calentamiento: ¿Estarían bien 15W? ¿o quizás serían deseables 30W? ¿Prefieres a lo mejor un soldador de 60W para trabajos de cierta entidad?.

La evidente realidad es que el soldador tendría que elegirse en consonancia con el tipo de trabajo que uno vaya a realizar. Para soldaduras de componentes muy pequeños, delicados y los de tipo SMD es preferible un soldador de punta fina y de unos 15 watios. Sin embargo, si vas a usarlo para trabajos mas generales (componentes estandar, cables de conexión de cierto grosor, etc...) lo mejor sería acudir a uno de más potencia, como por ejemplo 30 watios.

Y si haces montajes que necesiten de alguna soldadura a masa localizada en la propia caja o chasis metálico del aparato que construyes, entonces lo mejor sería uno de 60 watios como poco y con un generoso tamaño de punta que permita el calentamiento de una zona amplia, de manera que esa soldadura no te salga "fria".

La pregunta que surge es: ¿no existe un soldador que permita la consecución óptima de la mayoría de los trabajos que un técnico electrónico realiza normalmente hoy dia?. La respuesta la tienes a continuación.

Leer más...
Teoría
El receptor elemental (IV)

Tenemos nuestro receptor elemental casi terminado. Con lo desacrrollado hasta ahora ya podemos oir emisoras suficientemente cercanas y potentes, pero necesitamos más. Necesitamos ganar algo de sensibilidad además de poder "seleccionar" la emisora que queramos escuchar y desechar las que no nos interesen. Esa es precisamente la función que debe realizar el selector. Gracias a este circuito podremos seleccionar la emisora que deseemos, sintonizando la frecuencia de su señal.

Para conseguir diferenciar y seleccionar una señal de RF de entre las demás hemos de recurrir al llamado "circuito resonante paralelo", compuesto por una bobina y un condensador conectados como podemos ver en la figura. Ya sabemos lo que es y como actúa básicamente un solenoide o bobina, pero aún no hemos dicho nada de los condensadores. Su estudio es completamente necesario para entender el funcionamiento del selector, aunque su participación en los circuitos electrónicos no se limita solo a esta faceta.

Al ser uno de los componentes electrónicos mas empleados, sobre todo en circuitos de radio, necesitamos imperiosamente conocer como funcionan, aunque solo sea superficialmente. Una vez que tengamos claro este punto podremos acometer el estudio de los circuitos resonantes, pieza clave del selector.

Leer más...
Noticias
Revista 27 MHz - Fascículo 3

Fascículo Nº 3 de la revista "27 MHz" dedicada a la CB (Banda Ciudadana).

Extracto de su contenido: Construir una antena base "Ringo" para CB, teoría de antenas (III), adaptador de antena, diferentes tipos de antenas, frecuencímetro digital, los diodos y sus aplicaciones, código Q, etc...

Leer más...

El receptor elemental (IV)

Tenemos nuestro receptor elemental casi terminado. Con lo desacrrollado hasta ahora ya podemos oir emisoras suficientemente cercanas y potentes, pero necesitamos más. Necesitamos ganar algo de sensibilidad además de poder "seleccionar" la emisora que queramos escuchar y desechar las que no nos interesen. Esa es precisamente la función que debe realizar el selector. Gracias a este circuito podremos seleccionar la emisora que deseemos, sintonizando la frecuencia de su señal.

Para conseguir diferenciar y seleccionar una señal de RF de entre las demás hemos de recurrir al llamado "circuito resonante paralelo", compuesto por una bobina y un condensador conectados como podemos ver en la figura. Ya sabemos lo que es y como actúa básicamente un solenoide o bobina, pero aún no hemos dicho nada de los condensadores. Su estudio es completamente necesario para entender el funcionamiento del selector, aunque su participación en los circuitos electrónicos no se limita solo a esta faceta.

Al ser uno de los componentes electrónicos mas empleados, sobre todo en circuitos de radio, necesitamos imperiosamente conocer como funcionan, aunque solo sea superficialmente. Una vez que tengamos claro este punto podremos acometer el estudio de los circuitos resonantes, pieza clave del selector.

Cualquiera que tenga conocimientos de electrónica más o menos profundos es sabedor de un hecho particular que ocurre cuando varía el voltaje en un circuito. En la mayoría de ellos existe algo que se opone a estas variaciones de tensión. Esta oposición es conocida con el nombre de CAPACIDAD o CAPACITANCIA y, aunque no podemos verla, el efecto que produce es palpable en un circuito en cuanto modificamos el voltaje.

Dicho de otra manera, cuando bajamos el voltaje en un circuito la capacidad propia de dicho circuito intenta impedir esa bajada y tiende a mantener la tensión, y cuando subimos el voltaje la capacidad se opone a dicha subida y procura conservar el valor original de la tensión.

Después de decir esto es fácil suponer que en los circuitos que trabajan con corrientes continuas, el efecto capacitivo es solo apreciable en los momentos en que se conecta y se desconecta la tensión. En los circuitos que trabajan con corrientes alternas sin embargo, al estar variando la tensión constantemente a lo largo del tiempo, el efecto de la capacidad se deja notar de forma constante.

La capacidad existe en los circuitos electrónicos porque algunos de sus elementos son capaces de "almacenar cargas eléctricas". Estos tienen la propiedad de "cargarse eléctricamente" y esta carga eléctrica almacenada en ellos produce el efecto citado anteriormente.

EL CONDENSADOR
El nivel de capacidad inherente de un circuito va a depender de como esté construido y de los componentes electrónicos que lo implementen.

A veces interesa que un determinado circuito electrónico posea una capacidad relativamente alta para así evitar las variaciones de voltaje. Esto se consigue mediante los llamados CONDENSADORES o CAPACITORES, que son componentes electrónicos especializados en este aspecto, los cuales se fabrican con una amplia gama de valores capacitivos y se aprovechan, entre otros usos como veremos más adelante, para colocarlos estratégicamente en aquellos puntos donde nos interese que las variaciones de tensión sean mínimas.

Básicamente, podemos decir que un condensador no es más que un par de placas metálicas enfrentadas entre sí llamadas "armaduras", las cuales están casi pegadas la una de la otra pero sin llegar a tocarse, y entre las que existe un medio aislante llamado "dieléctrico", como puede ser por ejemplo aire, mica, poliestireno, etc...

Los condensadores tienen la propiedad de cargarse eléctricamente cuando le aplicamos una tensión a sus bornes, y esta carga eléctrica queda almacenada o "condensada" en ellos durante cierto tiempo después de desconectar la fuente de energía. La capacidad de un condensador depende de diferentes factores que vamos a estudiar a continuación. Puedes ver algunos de los símbolos usados para representar este componente en la ilustración de arriba.

COMPORTAMIENTO EN CORRIENTE CONTINUA
Estudiemos lo que ocurre con la corriente y la tensión en un circuito con una pila, un interruptor y un condensador.

En el momento en que conectamos el interruptor la diferencia de potencial de nuestra pila se hace notar inmediatamente en las armaduras del condensador. Debido a la proximidad mutua de dichas armaduras, la placa del condensador que está conectada al polo positivo de la pila atrae a los electrones de la otra hacia sí, aunque lógicamente no pueden abandonar su armadura y atravesar el dieléctrico, y la conectada al polo negativo de la pila repele a los electrones de la que tiene enfrente. Por lo tanto, en el momento de conectar el interruptor se crea dentro del condensador una fuerza de atracción-repulsión.

Esta fuerza de atracción-repulsión en las entrañas del condensador hace que se establezca una corriente eléctrica en el circuito, corriente que "extrae" electrones de la armadura conectada al polo positivo de la pila y, circulando a través de la propia pila, los "introduce" en la armadura que está conectada al polo negativo.

Nota que en ningún momento circula corriente alguna por el interior del condensador a través de su dieléctrico, sino que solo lo hace por el circuito exterior. Una armadura cede electrones al polo positivo de la pila y la otra los recoge del polo negativo. Se va produciendo entonces un defecto de electrones en una de las placas y un exceso en la otra.

El condensador va adquiriendo una d.d.p. entre sus placas cuyo sentido es opuesto al de la pila. Cuando esta d.d.p. llega a ser del mismo valor que la que tiene la pila ambas quedan compensadas y entonces la corriente deja de fluir y para. Decimos entonces que el condensador se ha cargado.

Una de las placas ha quedado con carga negativa pués tiene un exceso de electrones, y la otra ha acabado con carga positiva pués sufre un defecto de electrones. Entre las armaduras del condensador se establece lo que se llama un "campo eléctrico".

Si en estas condiciones abrimos el interruptor, el condensador permanecerá cargado, ya que hemos interrumpido el circuito y esa carga que posee no puede circular a través del dieléctrico el cual como hemos dicho está fabricado de material aislante (en este ejemplo hemos considerado que el dieléctrico es aire). Teóricamente el condensador jamás perderá esa carga, aunque como sabemos eso no es posible al no existir un material aislante perfecto con que fabricar dicho dieléctrico.

Con esto hemos podido apreciar algo importante:

En un circuito eléctrico en el que exista un condensador conectado a una fuente de energía eléctrica de corriente continua, la corriente a través de ese circuito solo circulará durante el tiempo necesario para cargar el condensador

Si en dicho circuito tuviéramos intercalado un amperímetro, veríamos que dicho instrumento señalaría la máxima intensidad de corriente justo en el instante en que cerramos el interruptor. Esa corriente iría disminuyendo paulatinamente conforme aumentara la tensión entre las placas del condensador.

En el momento en que esa tensión se igualara a la de la pila, el instrumento dejaría de indicar el paso de corriente alguna, ya que la tensión adquirida por el condensador compensaría la tensión de la pila y esto haría desaparecer la fuerza de atracción-repulsión que mencionamos anteriormente generada en el interior del condensador por la pila. Ahora lo que si existe en el interior del condensador es lo que hemos quedado en llamar un "campo eléctrico", generado por la carga que el condensador ha obtenido de la pila.

Para no hacer excesivamente largo este artículo vamos a parar aquí. En el próximo hablaremos de como reacciona un condensador cuando se le somete a la acción de una corriente alterna, lo cual nos interesa muchísimo para conocer el funcionamiento de los circuitos resonantes, los cuales funcionan con este tipo de corrientes. Además, en otros artículos, daremos información más completa sobre los condensadores y sobre los dieléctricos. Adelantándonos un poco, deciros que la capacidad de un condensador puede aumentar bastante cuando usamos un dieléctrico distinto al aire. Veremos el porqué esto es así. Hasta la próxima, nos vemos aquí en Radioelectronica.es, tu punto de encuentro.

 
C O M E N T A R I O S   
condensadores

#1 miguel » 07-06-2015 00:24

Cómo reacciona un condensador en relación a la variación de voltaje?

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.