Acceso



Registro de usuarios
Contáctenos
Teoría
Resistencias en serie y en paralelo

Es posible que en multitud de ocasiones hayas oído las expresiones "serie" y "paralelo" al hablar sobre determinados circuitos y/o componentes eléctricos o electrónicos. De hecho, en algunos de los artículos publicados en nuestro blog hemos mencionado alguna vez estos vocablos. Pero... ¿sabes exactamente que significan?. ¿Puedes distinguir cuando un condensador o una resistencia están conectados en paralelo o en serie?. ¿Que diferencias existen entre estos dos tipos de conexiones eléctricas?.

La verdad es que hemos estado tan ocupados hablando de la transmisión y recepción de radio, que no le hemos prestado casi ninguna atención a algo tan fundamental como son los circuitos serie y paralelo. A partir del presente artículo y en los que siguen, vamos a aprender todo lo relacionado con este tema.

En principio debes saber que cualquier componente electrónico puede conectarse de una o de otra manera, según nos interese, para conseguir un determinado propósito. Y según sea el tipo de conexión, el comportamiento de dicho componente será uno o será otro. A veces solo es posible un solo tipo de conexionado, ya que podría suceder que cualquier otro tipo de conexión fuese incompatible con el circuito que tenemos entre manos. Toda la información la tienes a continuación.

Leer más...
Otros Temas Interesantes
Noticias
48 Lecciones de Radio (Jose Susmanscky) Tomo 1

Tomo 1 de esta vieja pero extraordinaria colección de información sobre radio.

Escrita con un lenguaje sencillo, a poco cuidado que se ponga en su lectura se adquirirán los conocimientos básicos necesarios para el estudio de la electrónica y la radio. Estos libros son un clásico que hay que tener y hay que leer. En este tomo se estudian temas como el magnetismo, condensadores, ley de Ohm, resistencias, corriente alterna, recepción de señales de radio, etc...

Leer más...
Radioaficionados
Sencillo receptor para Onda Corta (O.C.)

Es un verdadero placer comprobar como varios de los artículos más visitados del blog son los relativos a la construcción de receptores de radio.

Nuestra web cuenta con información para elaborar distintos tipos de receptores, todos ellos muy sencillos de llevar a cabo y en esto no pensamos cambiar por ahora.

Desde el tradicional "receptor de cristal" o "radio galena" hasta el "receptor a reacción", pasando por el "receptor reflex", todos ellos podéis encontrarlos aquí en el blog de Radioelectronica.es, en sus versiones "modernas" con transistores.

Hoy os proponemos algo que, sin ser muy distinto, si que es poco conocido. Se trata de un receptor de cristal que podríamos calificar como "amplificado", con una sensibilidad fuera de lo normal para estos dispositivos, pero además con escucha en altavoz y para las bandas de Onda Corta (OC). Descúbrelo clicando en "Leer completo...".

Leer más...
Miscelanea
La circunferencia, el círculo y el número PI (π)

La mayor parte de las personas que vivimos en paises desarrollados, quizás porque estamos acostumbrados a obtenerlo todo con suma facilidad y/o que las cosas vengan a nosotros como caídas del cielo, a menudo las damos por sentadas de manera automática.

Practicamente en ningún momento nos preguntamos porqué algo es o se produce de una determinada manera. Nos basta con saber que tal o cual cosa es como es y punto, lo aceptamos sin reservas.

Algo así nos ha ocurrido a muchos cuando asistíamos a la escuela, en épocas pasadas. ¿Recuerdas cuando aprendiste la fórmula para hallar la longitud de la circunferencia?. ¿O cuando te enseñaron la fórmula para calcular la superficie del círculo?. Todos las aceptamos sin pestañear, y pocos fuimos los que nos preguntamos de donde habia salido el famoso número PI (π). Muchos daban por sentado que aquello era así porque lo decía nuestro profesor de matemáticas y se acabó.

Pero en realidad, esas conocidas fórmulas han salido de algún sitio o, mejor dicho, han sido promulgadas por una o varias personas después de haber dedicado mucho tiempo y esfuerzo al estudio de estas figuras geométricas.

¿Te gustaría saber más sobre este tema y conocer como se han llegado a obtener las mencionadas fórmulas y como están relacionadas entre ellas?... ¡Pues clica en "Leer completo..." ya!.

Leer más...
Práctica
Monitor para fusible mejorado

En un artículo anterior de nuestro blog ya abordamos un montaje titulado "Indicador de fusible fundido" mediante el cual tuvimos la oportunidad de estudiar el multivibrador astable.

Posteriormente publicamos otro artículo titulado "Monitor para fusible", en el que presentábamos un circuito mucho más simple que el primero, que iluminaba un led cuando el fusible fundía.

Sin ánimo de ser insistente, os queremos presentar ahora este otro monitor algo más sofisticado que el segundo y menos complicado que el primero, mediante el cual podemos saber de un vistazo si nuestro aparato electrónico está recibiendo la alimentación adecuada, o por contra, está interrumpida por culpa de un fusible defectuoso.

En esta ocasión usaremos un doble diodo LED con cátodos comunes. El encendido del LED de color verde (¡PERFECTO!) nos indicará el funcionamiento correcto del dispositivo, mientras que si el LED que luce es el de color rojo (¡ALARMA!) querrá decir que el fusible está interrumpido.

Debido a la extremada sencillez del circuito creemos que merece la pena integrarlo en alguno de nuestros montajes, según consideremos o no la necesidad o conveniencia de que incorpore la mencionada indicación.

Clica en "Leer completo..." para ver más detalles.

Leer más...
Teoría
El receptor elemental (VIII)

Llegamos a uno de los artículos más interesantes de los dedicados al receptor elemental. Por fin vamos a ver trasladados a la práctica todos los conocimientos adquiridos en los capítulos anteriores.

En este artículo vamos a colocar el circuito resonante paralelo estudiado anteriormente en el sitio que le corresponde dentro del receptor de radio que estamos estudiando.

Entenderemos perfectamente que ocurre para que nuestro receptor elemental "elija" solo una de las señales que capte la antena y rechaze el resto, y por lo tanto le dotemos de la necesaria "selectividad", que es una de las cualidades que distingue a los buenos receptores de los no tan buenos.

Además, veremos también de pasada y por el momento a un nivel muy básico, el concepto de "amplificación" del que hablamos en el artículo sobre "la telegrafía sin hilos y la radio" ¿lo recuerdas?. Se trataba de conseguir aumentar la amplitud de las señales de las emisoras más débiles para que puedan llegar a oirse con claridad, y con mas fuerza, en el auricular de nuestro receptor. ¿Que sistema podríamos utilizar para conseguir esto? ¿Se te ocurre alguno a tí?. Sigue leyendo y te enterarás cual es el que vamos a usar nosotros.

Leer más...
Noticias
Nueva sección de descargas de ebooks

Inauguramos una nueva sección de descargas en nuestra web. Se trata de ebooks de diferentes temáticas y, por supuesto, libres de derechos de autor o, en su caso, con la correspondiente autorización legal del propietario del copyright.

Los ebooks podrán estar en diferentes formatos, ya sea en PDF, Flyer, DJVU, DOC, HTML, ePub, Lit, etc... La idea es compilar un número más o menos importante de información sobre materias muy diversas, como electrónica, física y química, matemáticas, ciencias, informática, y todo aquello que nos parezca interesante para nuestros suscriptores, o que estos últimos nos soliciten.

Con la amplia oferta de lectores de ebooks y tablets existentes en el mercado actual creemos que es algo bueno para nuestra web, y para todas aquellas personas que nos visitan, la creación de una sección de descargas de este tipo.

Y que mejor empezar con un magnífico ejemplo de lo que decimos. Sigue leyendo... seguro que te interesa.

Leer más...

El receptor elemental (VI)

Una vez que hemos visto qué es un condensador y cual es su funcionamiento tanto en circuitos de corriente continua como en circuitos de corriente alterna, pasamos a ver que papel juega este componente electrónico en el selector de frecuencias de nuestro receptor elemental.

Ya hemos mencionado que el selector de frecuencias de nuestro sencillo receptor lo forman dos componentes: una bobina y un condensador. A estas alturas conocemos ambos elementos y, básicamente y de forma aislada, sabemos como funcionan. Ahora nos toca profundizar un poco en el comportamiento de los mismos cuando se montan juntos, formando ambos el corazón del selector de frecuencias de nuestro receptor.

Es verdad que hemos comentado que lo que ocurre en este tipo de circuitos es algo un tanto complejo, pero esto no va a impedir que, mediante varios ejemplos y con algunas ilustraciones, conozcamos los efectos que se producen cuando bobina y condensador hacen su trabajo particular de seleccionar señales de R.F. en el receptor que estamos estudiando. ¿Te apetece seguir?.

Mediante los llamados "circuitos resonantes", también conocidos como "circuitos oscilantes", nos va a resultar posible "sintonizar" la señal de R.F. deseada y posteriormente procesarla de modo que, una vez que la hayamos separado del resto, podamos "extraerle" la señal de B.F. (Baja Frecuencia) que ha viajado cabalgando sobre la primera.

Para empezar vamos a explicar la teoría de funcionamiento de estos circuitos de la manera más simple posible y sin acudir a las matemáticas. En el artículo siguiente haremos un pequeño experimento mediante el cual se nos van a despejar todas las incógnitas que tenemos sobre ellos y llegaremos a entender como funcionan en un selector de frecuencias.

FUNCIONAMIENTO DE UN CIRCUITO RESONANTE
Suponemos que tienes frescos en tu mente los conocimientos básicos relativos a las inductancias o bobinas y a los condensadores. Si no es así te recomendamos encarecidamente que vuelvas atrás y estudies los artículos relativos al electromagnetismo (parte I y parte II), el transformador y a los condensadores (parte I y parte II).

Para empezar podemos decir que el funcionamiento de un circuito resonante se basa en un intercambio de energía: la energía eléctrica del condensador se transfiere a la bobina y acto seguido la energía magnética de la bobina se transfiere de nuevo al condensador. Esta sucesión de transferencias de energia podría seguir de forma indefinida si tanto la bobina como el condensador fueran perfectos y no existieran las consabidas pérdidas en ninguno de los dos componentes. A continuación vamos a desgranar el proceso paso a paso para lo cual nos vamos a servir del circuito mostrado debajo.

Como puedes ver se trata de una pila, un condensador y una bobina conectados a través de un conmutador (señalado con un recuadro rojo y estando en principio colocado en la posición de reposo). En realidad, la pila nos servirá solo para cargar el condensador y así obtener la energía necesaria para que el circuito comience a funcionar. Para ello colocamos el conmutador en la posición que conecta la pila con el condensador y esperamos hasta que este último esté completamente cargado (ver figura siguiente).

Una vez conseguido lo anterior, colocamos de nuevo el conmutador en su posición de reposo. Vemos que en esta situación tenemos el condensador cargado electricamente. Dentro de un momento vamos a conectarlo a la bobina que se encuentra en "paralelo" con él.

En la ilustración siguiente podemos apreciar como el condensador, cargado gracias a la acción de la pila, lo hemos conectado en paralelo con la bobina a través del conmutador. Estamos a punto de presenciar el efecto "resonancia" en un circuito bobina-condensador en paralelo, también conocido por las siglas "LC".

A partir de ahora dejaremos de representar a la pila en nuestras ilustraciones puesto que ya ha cumplido su cometido (cargar el condensador) y también suprimiremos el conmutador, el cual nos ha servido para comprender como podemos cargar primero el condensador y luego, una vez cargado, conectarlo a la bobina. Entendemos, por tanto, que para empezar a estudiar el fenómeno de la resonancia en un circuito LC paralelo disponemos de UN CONDENSADOR CARGADO ELÉCTRICAMENTE y UNA BOBINA EN PARALELO con él. ¿Estás de acuerdo?.

Para llegar a comprender como funciona un circuito LC paralelo tienes que tener claro en tu mente los parámetros que intervienen en su funcionamiento. Son los siguientes:

1. Tensión en el condensador
2. F.E.M. inducida en la bobina
3. Corriente de descarga del condensador
4. Corriente inducida en la bobina
5. Campo magnético producido en la bobina

Debes conocer perfectamente que significan estos CINCO PARÁMETROS a la hora de estudiar el funcionamiento de este circuito y además, debes ser consciente del efecto que produce cada uno de ellos en cada instante determinado del proceso, sin pensar en su desarrollo como "un todo" sino mas bién imaginando que podemos "parar el tiempo" en cada uno de los momentos que se explican y entonces observar que está ocurriendo en las entrañas de nuestro circuito LC paralelo. Si no tienes muy en cuenta estos detalles, todo esto te parecerá un verdadero lio y casi con completa seguridad no llegarás a entender nada del asunto.

Si has captado la idea podemos seguir adelante, pero antes podrías imprimir en papel el gráfico representado en la última parte de este artículo. En él se detalla el desarrollo de cada uno de los tres parámetros más importantes del circuito LC paralelo en función del tiempo: tensión en el condensador (debida a la carga que contiene en cada momento), tensión inducida en la bobina y corriente a través del circuito. Observa en dicho gráfico como la corriente está desfasada 90º tanto con la tensión del condensador como con la f.e.m. inducida en la bobina (ya hablaremos de esto más adelante).

Al momento de conectar el condensador cargado a la bobina estamos en el inicio de la primera fase (momento A); el condensador comienza a descargarse a través del solenoide. Como dicha corriente de descarga produce casi de forma inmediata una f.e.m. inducida en la bobina, f.e.m. que tiene un valor similar a la tensión del condensador y es de polaridad opuesta, la intensidad de esta corriente de descarga no sube a su máximo nivel de manera instantánea ya que la f.e.m. opuesta inducida en la bobina se lo impide, sino que lo va haciendo gradualmente en el tiempo como se puede ver en la ilustración gráfica del final que representa estos parámetros. Mientras esto ocurre comienza a formarse un campo magnético en la bobina producido por la propia corriente de descarga del condensador.

La intensidad de la corriente de descarga tiende a aumentar y mientras tanto la tensión en bornes del condensador y también la f.e.m. inducida en la bobina van decreciendo (momento B). Conforme la intensidad de la corriente de descarga del condensador aumenta, también va aumentando proporcionalmente el campo magnético generado en la bobina.

En este punto debes tener claro que la tensión en bornes del condensador y la f.e.m. inducida en la bobina son SIEMPRE DE IDÉNTICO VALOR Y DE POLARIDAD OPUESTA. Esto se mantiene a lo largo de todo el tiempo que el circuito esté funcionando.

Llega el momento en que el condensador casi se ha descargado por completo. La d.d.p. en sus bornes y consecuentemente la f.e.m. inducida en la bobina se han reducido casi a cero. Toda la energía eléctrica que se encontraba en el condensador ahora se ha trasladado a la bobina y, por esta razón, su campo magnético ha alcanzado un nivel máximo. Es en este preciso instante cuando la intensidad de corriente de descarga del condensador también tiene un nivel máximo (momento C).

Lógicamente, al no quedarle apenas carga alguna al condensador, a partir de este momento la intensidad de corriente a través del circuito comienza a disminuir pero no lo hace de forma brusca, como lo haría en el caso de que no estuviera presente la bobina.

Al comenzar a disminuir dicha corriente también lo hace el campo magnético que ésta crea en la bobina. Esta disminución del flujo magnético produce en el solenoide una f.e.m. de signo contrario al que tenía cuando el condensador estaba cargado, provocando una corriente inducida que tiende a mantener la que hasta el momento estaba circulando a su través y que estaba producida por la descarga del condensador.

Esto hace que cambien las tornas y ahora sea el condensador el que reciba la carga eléctrica de la propia bobina. Efectivamente, gracias a la corriente que produce la f.e.m. (de signo contrario a la primera) inducida por el campo magnético menguante de la bobina, en este instante comienza a cargarse el condensador con polaridad inversa a la que tenía en principio (momento D).

Observa que este es precisamente el efecto del que habíamos hablado al comenzar nuestro artículo. Durante la descarga del condensador, la corriente en el circuito ha estado aumentando y gracias a ella se ha formado un campo magnético en la bobina. La energía que inicialmente estaba almacenada en el campo eléctrico del condensador, ahora se ha transferido al solenoide y está presente en su campo magnético.

Aunque en un momento determinado el condensador estuvo completamente descargado, la corriente continúa fluyendo gracias al efecto de la bobina en el circuito, hasta tal punto que el condensador comienza a cargarse en sentido contrario. Su polaridad comienza a ser opuesta a la que tenía en un principio. La energía almacenada en el campo magnético de la bobina comienza a transferirse de nuevo al condensador. ¿Entiendes el punto?.

La corriente de descarga del condensador, que había llegado a su punto máximo justo cuando casi no le quedaba carga eléctrica, es "sustituida" de forma casi inmediata por la corriente inducida en la bobina (del mismo sentido que aquella). Conforme pasa el tiempo y el campo magnético de la bobina sigue menguando su f.e.m. inducida va aumentando, lo que hace que aumente también la carga que recibe el condensador y consecuentemente la tensión en sus bornes.

Con el paso del tiempo el condensador se va cargando, la corriente inducida va disminuyendo, la f.e.m. inducida en la bobina sigue aumentando y la tensión en el condensador también aumenta. Una vez que el condensador ha alcanzado su carga máxima (la misma que tenía al principio solo que de signo contrario), cesa la corriente inducida y también cesa el campo magnético de la bobina (momento E).

Ahora la tensión en el condensador es máxima, de valor idéntico y de polaridad opuesta a la que tenía al comenzar este experimento. Estamos justo donde empezamos pero con la carga eléctrica del condensador invertida. El proceso comienza de nuevo, aunque esta vez la corriente comienza a circular en sentido contrario a como lo hizo al principio. El proceso se repite y se repite hasta que por causa de las pérdidas producidas en la bobina y en el condensador, la oscilación es rápidamente amortiguada llegando a anularse por completo en poco tiempo.

En la siguiente ilustración puedes ver claramente los valores que adquieren en cada instante cada uno de los parámetros más importantes de este circuito: la tensión en el condensador, la f.e.m. inducida en la bobina y la corriente a través del circuito. Para mayor claridad, cada uno de ellos se representa con un color distinto. Si haces click en la imagen ésta se ampliará y podrás verla con mas detalle.

Te repetimos nuestra recomendación de que imprimas el gráfico y lo tengas delante de ti cuando estudies este artículo. Es probable que así te resulte más fácil de entender el proceso de las oscilaciones en un circuito LC paralelo. Esperamos que este artículo te haya sido de utilidad. Más en el siguiente. Hasta entonces.

 
C O M E N T A R I O S   
RE: El receptor elemental (VI)

#3 Gabriel » 04-04-2015 18:30

felicidades por la explición tan clara, es complicado en internet encontrar literatura tan didactica y amena

RE: El receptor elemental (VI)

#2 Gabriel » 04-04-2015 18:28

muy buena explicación, es muy complicado encontrar literatura en internet que lo explique tan claramente.
Gracias

RE: El receptor elemental (VI)

#1 INFINUE » 21-05-2012 13:41

MUY UTIL AGRADESCO TODO EL CONOCIMIENTO QUE BRINDAS O BRINDAN PORQUE HAY SERES QUE DECEAN APRENDER PERO AVECES NO TIENEN RECURSOS ($).GRASIASSSSS DE VERDAD .SALUDOS

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.