Acceso



Registro de usuarios
Contáctenos
Teoría
Telecomunicaciones - El teléfono

Indudablemente, el telégrafo fué un adelanto tecnológico importantísimo en una sociedad en la que nunca habían existido las comunicaciones instantáneas a larga distancia. Aunque una persona que tuviera la necesidad de comunicarse con alguien situado a cientos de kilómetros de distancia tuviera que salir del hogar e ir a la oficina telegráfica más cercana para poner el mensaje, aquello no era en modo alguno un obstáculo importante. Lo verdaderamente importante era que esa persona recibiera el mensaje a los pocos minutos, sin importar el tener que desplazarse fuera de casa y solicitar los servicios de los telegrafistas profesionales habituados al código Morse. Pero los seres humanos siempre queremos más y además tendemos a la comodidad.

Lo ideal, en aquel momento, era no tener que depender de una oficina de telégrafos y poder expresar directamente a la persona interesada, con nuestras propias palabras, aquello que queríamos transmitirle, y si no se tuviera que salir de casa para ello... ¡mucho mejor!. Se imponía la necesidad de poder transmitir de manera instantánea la voz humana. Los científicos se pusieron manos a la obra y un buen dia... ¡voilá!... nació el teléfono.

Leer más...
Otros Temas Interesantes
Noticias
Manual de montaje de un Radio Galena

Tal y como anunciamos en su dia, ponemos a disposición de todos nuestros suscriptores el manual de montaje y construcción de un receptor de cristal, también conocido como "Radio Galena". Este manual es el complemento al artículo ya publicado sobre el mismo tema.

En él detallamos una serie de trucos y damos las instrucciones necesarias para construirse sin apenas dificultades un estupendo receptor con diodo de germanio.

Leer más...
Radioaficionados
Modulador de A.M. con un 7805

Seguro que alguna que otra vez habrás oido decir a alguien que la electrónica es un arte. Y la verdad es que, aunque para desarrollar cualquiera de sus facetas no hace falta un lienzo donde pintar, si que a veces nos encontramos con determinados circuitos que pueden llegar a sorprendernos gratamente, ya sea por su originalidad, por la manera en que están implementados o por cualquier otro motivo. De ahí que algunas personas se expresen como hemos mencionado al principio.

Como pasa con tantas otras cosas en la vida, en electrónica existen muchas maneras diferentes de hacer lo mismo, y es esto precisamente lo que a algunos les parece una cuestión de talento y habilidad particulares.

Al circuito que nos ocupa hoy podríamos calificarlo al menos con el adjetivo "atípico", ya que vamos a usar un regulador de tensión fija del tipo 7805 como modulador para un transmisor de AM. ¿Te lo puedes creer?.

Tanto si te lo crees como si no, te invitamos a leer este artículo al que, como poco, consideramos bastante interesante y al mismo tiempo instructivo para todos aquellos dispuestos a emprender la construcción de su propia emisora de radio en AM. Lo que vamos a describir aquí será una parte importante de la misma. ¿Nos sigues?.

Leer más...
Miscelanea
Luz trasera permanente para bicicleta sin pilas

¿Eres de los que les gusta pedalear?. Si es así, es muy probable que cuando te subes a la bicicleta quieras que tu seguridad no corra peligro.

Algo que te puede ayudar mucho en este sentido, y que no debería faltar nunca en el equipo de un ciclista, es una luz trasera o piloto que sea visible a muchos metros de distancia.

Dicho dispositivo no debería depender del nivel de carga de unas pilas o unas baterías sino que ha de ser un sistema autónomo e independiente, que se ponga en marcha y se ilumine de manera automática en cuanto se inicie la marcha, indicando a los demás nuestra presencia en la carretera.

Pero además, este piloto debería seguir iluminado aunque detuviéramos nuestra bicicleta y mantener la luz indicadora de nuestra posición sin necesidad de continuar pedaleando. Insistimos, todo ello sin usar pilas ni baterías.

Te presentamos en este artículo un sistema de iluminación trasera para bicicletas sin mantenimiento de ningún tipo, del cual no tendrás que preocuparte nunca más ya que estará siempre listo en el momento en que subas a tu vehículo y continuará dando servicio cuando te pares. ¿Te interesa?.

Leer más...
Práctica
Monitor para fusible mejorado

En un artículo anterior de nuestro blog ya abordamos un montaje titulado "Indicador de fusible fundido" mediante el cual tuvimos la oportunidad de estudiar el multivibrador astable.

Posteriormente publicamos otro artículo titulado "Monitor para fusible", en el que presentábamos un circuito mucho más simple que el primero, que iluminaba un led cuando el fusible fundía.

Sin ánimo de ser insistente, os queremos presentar ahora este otro monitor algo más sofisticado que el segundo y menos complicado que el primero, mediante el cual podemos saber de un vistazo si nuestro aparato electrónico está recibiendo la alimentación adecuada, o por contra, está interrumpida por culpa de un fusible defectuoso.

En esta ocasión usaremos un doble diodo LED con cátodos comunes. El encendido del LED de color verde (¡PERFECTO!) nos indicará el funcionamiento correcto del dispositivo, mientras que si el LED que luce es el de color rojo (¡ALARMA!) querrá decir que el fusible está interrumpido.

Debido a la extremada sencillez del circuito creemos que merece la pena integrarlo en alguno de nuestros montajes, según consideremos o no la necesidad o conveniencia de que incorpore la mencionada indicación.

Clica en "Leer completo..." para ver más detalles.

Leer más...
Teoría
El receptor elemental (VI)

Una vez que hemos visto qué es un condensador y cual es su funcionamiento tanto en circuitos de corriente continua como en circuitos de corriente alterna, pasamos a ver que papel juega este componente electrónico en el selector de frecuencias de nuestro receptor elemental.

Ya hemos mencionado que el selector de frecuencias de nuestro sencillo receptor lo forman dos componentes: una bobina y un condensador. A estas alturas conocemos ambos elementos y, básicamente y de forma aislada, sabemos como funcionan. Ahora nos toca profundizar un poco en el comportamiento de los mismos cuando se montan juntos, formando ambos el corazón del selector de frecuencias de nuestro receptor.

Es verdad que hemos comentado que lo que ocurre en este tipo de circuitos es algo un tanto complejo, pero esto no va a impedir que, mediante varios ejemplos y con algunas ilustraciones, conozcamos los efectos que se producen cuando bobina y condensador hacen su trabajo particular de seleccionar señales de R.F. en el receptor que estamos estudiando. ¿Te apetece seguir?.

Leer más...
Noticias
Curso de ELECTRÓNICA BÁSICA 01

PUBLICADO EL CAPÍTULO 1

Publicado el primer capítulo de nuestro CURSO DE ELECTRÓNICA BÁSICA. Ya puedes visualizarlo en este mismo artículo.

Leer más...

Los condensadores I

Los condensadores son componentes muy usados en electrónica en general, pero esto se hace más cierto, sobre todo, en la especialidad de radio.

Puede decirse que para la construcción de un equipo de radio son absolutamente necesarios los condensadores. Sin ellos no hubiera sido posible el desarrollo actual de esta rama de la electrónica.

En el presente artículo, vamos a disertar más profundamente sobre los pormenores relativos a estos componentes. Además del cálculo de las configuraciones serie y paralelo, vamos a ver algunos detalles sobre su construcción y sobre los tipos de materiales que se utilizan en su fabricación.

Hablaremos además del dieléctrico, y el porqué la composición de este elemento modifica la capacidad de este componente electrónico. Todo ello en los artículos que os presentamos a partir de ahora. ¿Nos sigues?.

Aunque ya hemos estudiado el comportamiento de los condensadores tanto en circuitos de corriente continua como de corriente alterna, bien es verdad que hasta el momento no lo hemos dicho todo sobre ellos. Nos faltan ciertas particularidades que vamos a ir exponiendo a lo largo de este artículo y los siguientes.

La construcción de condensadores es algo que muchos radioaficionados realizan ellos mismos de forma manual. No es extraño encontrar condensadores variables caseros, los cuales se montan en las etapas de sintonia de los receptores, y que el radioaficionado fabrica con chapas extraidas de algún transformador viejo, con hojas de afeitar o con papel de aluminio y algún material aislante que hace las veces de dieléctrico. Sin embargo, al acometer una empresa como esa surge una pregunta... ¿Sabemos calcular la capacidad de un condensador en base a las características de los materiales empleados?.

CÁLCULO DE CONDENSADORES
A estas alturas ya sabemos perfectamente como está constituido un condensador, tenemos una idea general bastante aproximada de su funcionamiento y también de cuales son los factores que determinan su capacidad. Por lo tanto, a continuación vamos a indicar cual el la fórmula que nos va a permitir calcular el valor de la capacidad de un condensador plano o de placas paralelas, en función de los parámetros que ya conocemos por el estudio de artículos anteriores. Es la siguiente:

Como veremos posteriormente, la capacidad de un condensador dependerá, entre otros factores, del dieléctrico que se emplee en su construcción. Por ejemplo, un condensador tendrá una capacidad entre 5 y 8 veces mayor si el dieléctrico empleado en lugar de aire es mica, de unas 3,5 veces si es poliester y de unas 170 veces o más si es dióxido de titanio puro. A este parámetro se le conoce como "constante dieléctrica" y se representa con la letra griega épsilon (ε). En la tabla siguiente anotamos la constante dieléctrica de algunas sustancias.

Para mayor claridad, vamos a ver un ejemplo de aplicación de la fórmula anterior. Supongamos que tenemos un condensador plano compuesto por dos placas paralelas de 4 cm2 cada una. Como dieléctrico vamos a usar mica, con una constante dieléctrica de por lo menos 5. El espesor del dieléctrico es de 0,3 mm, por lo que esta misma será la distancia entre placas. El cálculo lo realizaremos usando la fórmula mostrada anteriormente e incorporándole los datos que tenemos, de la siguiente manera:

Como hemos visto, resulta muy sencillo aplicar esta fórmula, aunque en principio parezca muy complicado. Si te has fijado bién en ella, te habrás dado cuenta de algo muy importante que ocurre en relación con la constante dieléctrica ε, la cual tiene un efecto multiplicador en la fórmula que estamos estudiando. ¿Que queremos decir con esto?. Pues que la capacidad del condensador puede llegar a variar enormemente dependiendo del material usado como dieléctrico.

Por ejemplo, en el cálculo que hemos realizado anteriormente, si en vez de utilizar un dieléctrico de mica (5) hubiéramos usado uno de Titanato de Estroncio puro (310), nuestro condensador tendría una capacidad 62 veces mayor (310 dividido entre 5), con lo que alcanzaría un valor de 3.662 pF en vez de los 59 iniciales. Si no te lo crees solo tienes que realizar el cálculo con el nuevo dato. ¿Por qué ocurre este aumento tan desmesurado de la capacidad simplemente al cambiar el tipo de dieléctrico?. La razón hay que buscarla en la llamada "polarización inducida".

LA POLARIZACIÓN INDUCIDA
Vamos a hacer un experimento que nos va a servir para entender el concepto de "polarización inducida" en el dieléctrico de un condensador.

Para empezar, tomemos un condensador de placas paralelas que no disponga de dieléctrico, con lo cual el aire es el que actuará como tal, y conectémoslo a una bateria (corriente contínua). Como sabemos, el condensador se cargará con la tensión de la batería, una de las placas con carga positiva y la otra con carga negativa. Podremos dar fé de este hecho conectando un voltímetro a sus extremos nada más desconectar el condensador de la batería.

Acto seguido, y sin desconectar el voltímetro del condensador, introduzcamos entre sus placas un material dieléctrico. ¿Que pasa entonces?. ¿Has visto lo que sucede?... Efectivamente... La tensión del condensador se reduce drásticamente.

Podemos pensar que esto ocurre porque parte de las cargas contenidas en las placas del condensador, de alguna manera han pasado al dieléctrico y se han anulado, quizás porque lo hemos puesto en contacto con dichas placas y el dieléctrico pudiera tener algunas cualidades conductoras. Sin embargo, esta idea la desechamos enseguida, ya que si ahora sacamos el dieléctrico de entre las placas de nuestro condensador, el voltímetro de nuevo nos vuelve a indicar la d.d.p. más alta que señaló al principio.

Si de forma repetitiva introducimos el dieléctrico otra vez entre las placas, de nuevo la d.d.p. del condensador vuelve a bajar, y si sacamos el dieléctrico la d.d.p. vuelve a subir. ¿Te parece extraño este comportamiento?. ¿Tienes alguna explicación para ello?.

La explicación está en la llamada "polarización inducida" del propio dieléctrico al estar sometido al campo eléctrico presente en el interior del condensador. Aunque el material que hayamos usado como dieléctrico sea un buen aislante, en él ocurre lo que se llama "polarización por redistribución de cargas". Este fenómeno es el responsable de que la d.d.p. en el condensador se reduzca al introducir un dieléctrico entre sus placas, y también de que el condensador adquiera una mayor capacidad de almacenamiento de cargas eléctricas. Intentemos comprender este fenómeno.

POLARIZACIÓN DEL DIELÉCTRICO
Es perfectamente lógico que en este mismo momento te estés preguntando lo siguiente: Si decimos que el dieléctrico es un buen aislante y hablamos de que en él se manifiesta una "polarización inducida por redistribución de cargas"... ¿De donde demonios salen estas cargas? ¿Como es posible que en un material aislante, en el que apenas podemos hallar electrones libres, existan cargas eléctricas que ejercen una influencia decisiva en el condensador?.

Tenemos que buscar una razón lógica para ello y la encontramos en lo que se llama "momento dipolar", fenómeno este que ocurre a nivel molecular. Como ya hemos dicho, el dieléctrico debe ser un excelente aislante, por lo que no existen electrones libres en él, pero esto no significa que dicho dieléctrico no se pueda polarizar.

Recuerda que hemos hablado de polarización por "redistribución de cargas" y no por "electrones libres". Además, estamos hablando de una "polarización inducida" por agentes externos, es decir, no intrínseca.

Quizás todo esto te esté pareciendo algo complicado, pero en realidad no lo es. Como diría "Jack el Destripador"... ¡vayamos por partes!. A partir de ahora entenderás todo lo que hemos explicado anteriormente.

MOMENTO DIPOLAR
¿Que es exactamente esto de "momento dipolar"?. Para contestarte a esta pregunta es de absoluta necesidad que te responda con otra pregunta... ¿recuerdas lo que es una molécula y como está constituida?. Si no es así te recomiendo que vuelvas a leer los artículos titulados "Teoría electrónica de la materia" y "El átomo - Electricidad estática", ya que para entender lo que viene ahora es absolutamente necesario que tengas muy claros en tu mente aquellos conocimientos.

No obstante, vamos a refrescarte la memoria con la definición general para el término:

Una molécula es la parte más pequeña posible de una sustancia, la cual conserva todas sus propiedades fisico-químicas.

En un principio, las moléculas del dieléctrico que hemos usado en el experimento anterior resultan ser neutras, eléctricamente hablando.

Sin embargo, cuando dicho dieléctrico entra dentro del campo eléctrico que existe entre las armaduras de un condensador, se produce un efecto que crea cierta separación de las cargas positivas y negativas existentes en sus moléculas.

Para poder llegar a entender esto podemos imaginarnos como las cargas eléctricas que contiene una de las moléculas de nuestro dieléctrico se distribuyen de forma más o menos regular en todo el espacio que ocupa dicha molécula, de modo que el efecto que podrían producir estas cargas en principio queda anulado, y la molécula aparece como eléctricamente neutra la miremos como la miremos.

Sin embargo, si la exponemos a la acción de un campo eléctrico, podríamos decir que la molécula se deforma, y sus cargas eléctricas ya no guardan la regularidad posicional que en principio tenían, de manera que dicha molécula aparece polarizada, con carga negativa por un lado y positiva por el opuesto. Este efecto se produce debido a la fuerza de atracción-repulsión del campo eléctrico que la rodea y es lo que llamamos momento dipolar.

En la ilustración podemos ver como la parte de la izquierda de la molécula es negativa con respecto a la parte derecha, en la que predominan las cargas positivas. La molécula ha quedado polarizada eléctrica y posicionalmente aunque en su conjunto sigue siendo eléctricamente neutra. Podemos decir que se trata de una polarización posicional.

Lo anterior ocurre en cada una de las moléculas del dieléctrico, una vez que este está inmerso en el campo eléctrico de las placas del condensador, por lo que a nivel global al dieléctrico le ocurre lo mismo que a cada una de sus moléculas y aparece polarizado eléctrica y posicionalmente por el efecto que produce la suma de todas las partículas afectadas.

Sin embargo, tal y como ocurre con sus moléculas, el dieléctrico como unidad sigue siendo eléctricamente neutro porque no tiene ni defecto ni exceso de electrones.

Se dice que esta es una "polarización inducida" como consecuencia del campo eléctrico al que está siendo sometido el dieléctrico por las placas del condensador cargado, lo cual no hace que deje de producir su correspondiente efecto en el componente electrónico desde el punto de vista de su funcionamiento general.

Para ver con detalle cual es el efecto del que hablamos será mejor que mires la siguiente ilustración. En ella hemos representado las placas de un condensador y su correspondiente dieléctrico. En este último hemos dibujado una simulación de las moléculas polarizadas.

Observa como la polarización inducida en el dieléctrico hace que la parte positiva de sus moléculas estén enfrentadas a la placa negativa del condensador y viceversa, cosa esta que podemos entender perfectamente si hemos leído los artículos anteriores.

Ahora también podemos entender el porqué la tensión con la que hemos cargado un condensador disminuye al instalarle un dieléctrico. La explicación es evidente: el campo eléctrico inducido en dicho dieléctrico está en oposición con la carga de las placas del condensador, lo que hace que la tensión medida en sus bornes disminuya. Es como si tuviéramos instaladas dos pilas en serie y una de ellas estuviera colocada al revés; sus tensiones se restarán y predominará la de mayor d.d.p., en este caso la que existe entre las placas del condensador.

Además podemos explicarnos el aumento de la capacidad de almacenamiento de cargas, ya que si la d.d.p. del condensador disminuye al colocarle un dieléctrico, y en ese momento volvemos a conectarlo a la fuente de energía eléctrica que lo cargó originalmente, la cual tiene ahora una tensión superior a la que existe entre las placas, dicha batería seguirá cargando el condensador hasta que la tensión de sus placas alcancen de nuevo la que tiene la batería y se igualen, momento en el cual la corriente dejará de fluir y el proceso de carga se habrá completado.

De esta manera hemos conseguido introducir más carga que antes en el mismo condensador, o dicho con otras palabras, hemos aumentado su capacidad ya que podemos introducir en él más carga que antes, para una determinada d.d.p. aplicada a sus armaduras.

Creo que ya está bién por hoy ¿no te parece?. Seguiremos hablando de los condensadores en el próximo artículo. No te lo pierdas. Nos vemos en Radioelectronica.es, tu punto de encuentro. ¡Hasta pronto!.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.