Acceso



Registro de usuarios
Contáctenos
Teoría
Diferencia de potencial - Descarga eléctrica

Según lo estudiado en artículos anteriores, podemos recordar que entre dos cuerpos con distinta carga eléctrica podíamos provocar una descarga por tres sistemas diferentes. Estos son: por contacto, mediante un conductor o por medio de un arco o chispa. En este artículo vamos a ampliar los conceptos de circuito eléctrico, descarga de un cuerpo y corriente eléctrica.

En principio la propia palabra, descarga, hace entrever la existencia de un cuerpo que contiene una carga en si mismo y que esta carga se transfiere a otro cuerpo distinto debido a la propia descarga. ¿Quiere esto decir que el hecho de poner en contacto un cuerpo fuertemente cargado con uno que no tiene ninguna carga provocará la descarga total del primero? Para salir de dudas lée este artículo completo.

Leer más...
Otros Temas Interesantes
Noticias
Videotutorial del calculador para Ebay

Para aquellos que nos han trasladado sus consultas relativas a las dudas con el manejo de nuestro calculador de precios y comisiones de venta para Ebay España, aquí tenéis este videotutorial en HD mediante el cual estamos seguros que vais a despejar todas vuestras lagunas.

Esperamos con esto ayudaros con vuestras ventas a través de Ebay España, seáis particularesvendedores profesionales.

Leer más...
Radioaficionados
Receptor a reacción para Onda Corta (I)

El principio de la reacción fue ampliamente utilizado por los radioaficionados en los albores de la radio, cuando aún los transistores no habian hecho su aparición en el escenario electrónico.

Los primeros receptores a reacción con válvulas de vacío tuvieron tal aceptación que fueron los preferidos durante muchos años por aquellos que no disponían de la capacidad económica para adquirir un equipo comercial, o bien no tenían los conocimientos técnicos necesarios para la construcción y ajuste de un receptor superheterodino, bastante más complejo de llevar a la práctica y de poner a punto.

Efectivamente, la construcción de un receptor regenerativo, como también suele llamársele, no es nada dificultosa y, por si fuera poco, prácticamente no requiere de ningún ajuste complicado. Además, y para seguir añadiéndole ventajas, los resultados que con él pueden obtenerse casi nunca defraudan. Con solo unos pocos componentes su sensibilidad puede llegar a ser extraordinaria, acercándose mucho a los receptores más sofisticados.

Y para seguir contándote ventajas te diremos que ahora es más fácil que nunca construir uno de estos equipos, ya que afortunadamente podemos usar transistores modernos en lugar de válvulas termoiónicas, sin necesidad de acudir a las altas tensiones de alimentación necesarias para estas últimas. Con solo una pila y algunos componentes más podremos disfrutar de nuestro receptor de Onda Corta en un plis-plas. ¿Te apuntas?.

Leer más...
Miscelanea
Luneta térmica (antivaho) como antena AM-FM

Es probable que alguna vez te haya pasado lo que a mi.

Se activó la alarma del radio-reloj a las 8:00 de la mañana en punto. Todavía casi dormido me incorporé y corrí las cortinas oyendo las noticias en mi emisora favorita. Unos espléndidos rayos de sol penetraron de golpe en mi habitación y acabaron con la oscuridad que hasta entonces había en ella.

Acto seguido procedí al correspondiente aseo matutino para, justo después, sentarme a desayunar. El café estaba exquisito y la tostada, regada con aceite de oliva virgen extra, me supo a gloria bendita.

Aquel dia me levanté contento, muy contento. Tenía muy buenas espectativas. Como soy un enamorado de la radio, me gusta escuchar las tertulias matinales en el coche de camino al trabajo, lo primero que hago al subir al vehículo es conectarla.

He de aclarar que mi coche duerme en plena calle. No soy el afortunado conductor que dispone de garaje. ¡Que raro!... No logro sintonizar ninguna emisora... ¿Que está pasando?.

Paro el coche y me apeo para comprobar la antena... ¡LA ANTENA!... ¡Coñ.!... ¡Que me han robado la antena!.

Esto me estropeó completamente el dia. El cabreo que pillé fue monumental, de campeonato. Entonces tomé una decisión.

Para que esto no me ocurriera más, a partir de entonces decidí usar la luneta térmica, también conocida por el término "antivaho", como antena para mi receptor de radio AM/FM. Si alguien tenía la intención de dejarme sin escuchar la radio tendría que llevarse la luna trasera, y ya eso le iba a resultar más complicado que robar una simple antena... ¿no crees?.

Leer más...
Práctica
Monitor para fusible mejorado

En un artículo anterior de nuestro blog ya abordamos un montaje titulado "Indicador de fusible fundido" mediante el cual tuvimos la oportunidad de estudiar el multivibrador astable.

Posteriormente publicamos otro artículo titulado "Monitor para fusible", en el que presentábamos un circuito mucho más simple que el primero, que iluminaba un led cuando el fusible fundía.

Sin ánimo de ser insistente, os queremos presentar ahora este otro monitor algo más sofisticado que el segundo y menos complicado que el primero, mediante el cual podemos saber de un vistazo si nuestro aparato electrónico está recibiendo la alimentación adecuada, o por contra, está interrumpida por culpa de un fusible defectuoso.

En esta ocasión usaremos un doble diodo LED con cátodos comunes. El encendido del LED de color verde (¡PERFECTO!) nos indicará el funcionamiento correcto del dispositivo, mientras que si el LED que luce es el de color rojo (¡ALARMA!) querrá decir que el fusible está interrumpido.

Debido a la extremada sencillez del circuito creemos que merece la pena integrarlo en alguno de nuestros montajes, según consideremos o no la necesidad o conveniencia de que incorpore la mencionada indicación.

Clica en "Leer completo..." para ver más detalles.

Leer más...
Teoría
Introducción

Cada día que pasa la electrónica abre nuevos campos a la investigación, la industria y al bienestar humano. Millones de personas a través de toda la Tierra desarrollan su actividad dentro de una de sus ramas. A nosotros nos ha tocado vivir en esta época caracterizada por el vertiginoso desarrollo de esta ciencia y nadie es capaz de predecir donde acabará.

Sin embargo, nos hemos acostumbrado a ella y a nadie le sorprende en la actualidad tantas novedades y portentos debidos a la electrónica. Ya no nos llama la atención el "¡más difícil todavía!", pero estamos seguros de que quedaría asombrado si pudiera conocer y calibrar la naturaleza, los entresijos y todo lo que rodea a esta ciencia que está de moda. Nada mejor para ello que comenzar retrocediendo en el tiempo para recordar algunos hechos trascendentales que hicieron historia.

Leer más...
Noticias
The Maplin Magazine Nº 1

Te presentamos el primer número que se publicó de la revista "Electronics The Maplin Magazine" allá por diciembre de 1981.

Aunque antigua, merece la pena echarle un vistazo por la cantidad y la calidad de su contenido, alguno de los cuales era muy novedoso para su época. Clica en Leer completo... y te enterarás de más cosas.

Leer más...

La resistencia eléctrica

Seguramente te habrás dado cuenta de que cada vez que hemos hablado de circulación de la corriente electrica hemos dicho que lo hace a través de un conductor o un hilo conductor. A nadie se le ocurriría hacer un circuito con hilo de nylon porque jamás conseguiría que la corriente eléctrica circulara a través de él. Al hablar de hilos conductores nos referimos a hilos o cables metálicos ya que son este tipo de materiales los que mejor conducen la corriente eléctrica. De hecho existen materiales que permiten el paso de la corriente a su través sin apenas ninguna dificultad. Estos materiales son los llamados CONDUCTORES y la plata se lleva la palma de todos ellos siendo el metal mejor conductor que existe.

Sin embargo, el metal conductor más utilizado en instalaciones eléctricas no es la plata, como cabe suponer debido a su alto precio, sino el cobre. Sin ser tan buen conductor como la plata, su precio mas bajo y su gran ductilidad (propiedad de poder deformarse de forma continuada sin romperse) que permite obtener hilos muy finos, hacen del cobre el conductor eléctrico por excelencia en la mayoria de las industrias. En este artículo vamos a hablar de los buenos y los malos conductores de la electricidad, pasando por los que están en la zona intermedia. ¿Nos sigues?.

Vistos desde el punto de vista eléctrico, los materiales que son buenos conductores de la electricidad son aquellos cuyos átomos se desprenden con facilidad de los electrones de su última órbita. Estos electrones, los de la última capa del átomo, reciben el nombre de "electrones de valencia" y la última capa en la que orbitan "órbita de valencia". Recordemos esto ya que es muy importante para el próximo estudio de los semiconductores:

Los electrones de la última órbita del átomo se llaman "electrones de valencia" y son los responsables de que el material del que forman parte sea o no buen conductor

Pero no todos los tipos de átomos sueltan electrones con la misma facilidad que lo hacen los que componen la plata o el cobre. Hay átomos que "no dejan", por decirlo así, que sus electrones de valencia se separen de ellos y la razón la veremos en los artículos dedicados a los semiconductores. Estos átomos "se resisten" a convertirse en átomos excitados y permanecen estables todo el tiempo. Es cierto que algunos electrones logran "escapar" de la severa atracción de la que son objeto por parte de su nucleo, pero en cantidades bastantes mas pequeñas que en los materiales que son buenos conductores. Además, esta oposición aumenta o disminuye en función de la temperatura y esto lo tendremos muy en cuenta cuando nos toque estudiar las válvulas de vacio (efecto termoiónico) y también los transistores.

A los materiales que no son tan buenos conductores como la plata o el cobre pero permiten que haya algo de corriente eléctrica a su través, dependiendo esta de las condiciones a que sean sometidos (ya hablaremos de cuales son estas condiciones), se les conoce comunmente como SEMICONDUCTORES. Ejemplo de estos son el germanio, el silicio o el selenio.

Pero también existen aquellos materiales que son absolutamente ineficaces para conducir la electricidad. Sus átomos no permiten en absoluto que los electrones de valencia escapen a su control de manera que en su interior prácticamente no existen electrones libres. A estos se les llama AISLANTES porque no permiten que la corriente eléctrica circule a través de ellos. Más adelante veremos el motivo por el que los átomos de ciertos materiales son tan estables que sus electrones de valencia están "desganados" y no tienden a escapar de la atracción de su núcleo y sin embargo los de otros cuerpos, como el cobre o la plata, si se separan con mucha facilidad y se convierten en electrones libres haciendo conductor al cuerpo del que forman parte.

Podemos decir entonces que un determinado tipo de material será más o menos conductor dependiendo de la "dificultad" que oponga al paso de la corriente eléctrica. En electricidad y electrónica, a esta "dificultad" se le conoce como la RESISTENCIA ELÉCTRICA del conductor o, en su caso, del semiconductor o del aislante. Hasta los mejores conductores oponen alguna resistencia a la corriente eléctrica, aunque esta oposición puede llegar a ser mínima, pero siempre ejercerá cierta influencia sobre la corriente eléctrica que circula a su través. Afirmamos, por lo tanto, que en un circuito compuesto de un generador y un hilo conductor conectado a el, para una misma tensión del generador la intensidad de corriente eléctrica dependerá de la mayor o menor resistencia  que oponga el conductor a su paso. Según todo lo visto en los párrafos precedentes, definimos el concepto:

RESISTENCIA ELÉCTRICA ES LA DIFICULTAD QUE TODO CONDUCTOR OPONE AL PASO DE LA CORRIENTE ELÉCTRICA, DETERMINANDO LA INTENSIDAD QUE CIRCULA POR ÉL

Llegados a este punto deberíamos preguntarnos... ¿Y de que depende la resistencia que ofrece un conductor? Pués existen TRES FACTORES DETERMINANTES:

1. La naturaleza atómica del conductor.
2. Su longitud
3. Su grosor

El primer punto ya lo hemos estudiado en este artículo y hemos visto que dependiendo de la estructura atómica del material, este se comportará como un conductor, como un semiconductor o como un aislante y esto nos lleva a la conclusión de que cada sustancia tiene una naturaleza que le confiere mayor o menor conductividad. Esta mayor o menor conductividad, o contemplado desde otro punto de vista, esta mayor o menor resistencia característica de cada sustancia se conoce como RESISTENCIA ESPECÍFICA o también como RESISTIVIDAD. Este parámetro se representa con la letra griega ρ (rho minúscula) y podemos definirlo como la resistencia que ofrece una sustancia cuando tiene la unidad de longitud y la unidad de sección a una temperatura de cero grados centígrados (ya hemos dicho al principio de este artículo que la temperatura influye en la resistencia que oponen los cuerpos al paso de la corriente eléctrica), aunque en la práctica la mayoría de las veces la temperatura se da a 20 o 25 grados centígrados. El coeficiente de resistividad se especifica en ohmios por metro.

He aquí el coeficiente de resistividad de algunos materiales a 20 grados centígrados de temperatura: para la plata 0,016 ohm/m, para el cobre 0,017 ohm/m, para el aluminio 0,028 ohm/m, para el cinc 0,056 ohm/m, para el hierro 0,105 ohm/m, platino 0,106 ohm/m, oro 0,024 ohm/m, niquel 0,1 ohm/m, estaño 0,139 ohm/m, mercurio 0,942 ohm/m, plomo 0,204 ohm/m, carbón 50 ohm/m, latón 0,08 ohm/m. Analicemos los otros dos puntos anteriores:

La longitud. Es del todo lógico pensar que cuanto mas largo sea un conductor mayor camino deberán recorrer los electrones y por lo tanto mas obstáculos tendrán que sortear. Los roces que sufrirán los electrones libres serán mayores y por lo tanto la resistencia aumentará. Para calcular la resistencia de un conductor el factor longitud siempre se da en metros.

La sección o grosor. Es fácil adivinar que, tal como al aumentar la longitud del conductor aumenta su resistencia porque aumentan los obstáculos a sortear, al aumentar su sección también aumentan los "huecos" por los que los electrones pueden "colarse". Las posibilidades de roce disminuyen en este caso ya que los electrones disponen de mas sitio por donde pasar. Es como cuando circulamos por una autopista con mucho tráfico; cuanto más carriles tenga mas fluido y rápido será el tráfico a su través ¿no es cierto?. La sección de un conductor se da siempre en milímetros cuadrados.

Una vez que hemos dejado claro lo anterior, podemos dar la fórmula para calcular la resistencia (expresada en ohmios) de un conductor en función de su resistividad, de su longitud y de su sección:

Como ya hemos dicho y ahora hacemos hincapié, al aplicar esta fórmula para el cálculo de la resistencia de un conductor debemos de utilizar la longitud "L" en metros y la sección "s" en milímetros cuadrados. El resultado lo vamos a obtener en ohmios, que es la unidad de resistencia eléctrica. La definición de ohmio acordada internacionalmente y de forma estandarizada (mas adelante hablaremos de la definición técnica que tiene que ver con la d.d.p. y la intensidad de corriente) es la siguiente:

Un ohmio es la resistencia que presenta al paso de la corriente una columna de mercurio de 106,3 centímetros de longitud y una sección de 1 milímetro cuadrado cuando esta se encuentra a una temperatura de cero grados centígrados y a una presión atmosférica considerada normal

También a nivel internacional, el ohmio se representa con la letra griega Ω (omega mayúscula) y como la mayoría de las unidades utilizadas en electrónica tiene sus múltiplos y submúltiplos. Los mas utilizados son el kilohmio (KΩ) que corresponde a 1000 ohmios, el megaohmio (MΩ) que es un millón de ohmios, el miliohmio (mΩ) que es una milésima parte de ohmio y por último el microhmio (µΩ) que es una millonésima parte de ohmio.

Al hablar de ohmios no podemos terminar este artículo sin decir ni una palabra del hombre que dio el nombre a esta unidad de medida. Georg Simon Ohm fué un físico y matemático alemán que se le conoce principalmente por sus trabajos con las corrientes eléctricas. Desarrolló una de las leyes mas utilizadas en el cálculo eléctrico y electrónico, la famosa ley de Ohm. Pero de esto hablaremos en el siguiente artículo. Nos vemos allí.

 
C O M E N T A R I O S   
RE: La resistencia eléctrica

#3 jose oliveros » 20-07-2018 21:20

Los temas explicados tienen una gran información y muy comprensibles les felicito por su forma didactica saludos

La resistencia eléctrica

#2 BHW » 15-04-2017 14:01

This page certainly has all the information I needed concerning this subject and didn't know who to ask.

RE: La resistencia eléctrica

#1 regina » 23-01-2011 20:39

muy bien explicado, resumido,claro y practico. tengo 20 años, estudio ingenieria, y aunque no crean todavia la forma didactica me es atractiva para el comprendimiento de los temas. de todos modos quisiera saber por qué razón la temperatura modifica la resistencia, ¿es por la agitacion de los electrones?
gracias

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.