Acceso



Registro de usuarios
Contáctenos
Teoría
Teoría electrónica de la materia

¿Que hay de nuevo? ¿Dispuestos a continuar con nuestro estudio?. Hoy hablaremos entre otras cosas de la ley de Coulomb. Charles de Coulomb era un físico e ingeniero francés nacido en el año 1736 en la ciudad de Angulema. Sus mayores aportaciones a la ciencia están relacionadas con la electrostática y el magnetismo, habiendo realizado además muchas investigaciones sobre electricidad. Enunció de manera matemática la ley de atracción/repulsión entre cargas eléctricas, la cual lleva su nombre y ha servido de base para los avances conseguidos en el campo de la física moderna.

Si te parece bien, vamos a desgranar el significado de esta ley, la cual nos va a servir para introducirnos en la llamada "Teoría electrónica de la materia", puerta de entrada directa al estudio de la electricidad, la radio y, valga la redundancia, la electrónica.

A partir de este artículo comenzamos a tocar temas de mucha importancia. Es esencial prestar la máxima atención para que los conocimientos adquiridos se graben en nuestra mente y para lograr entender lo que vamos a explicar en los artículos siguientes. ¿Aceptas el reto?.

Leer más...
Otros Temas Interesantes
Noticias
Calculador de decibelios

Parece que es mucha la confusión que existe en torno a esta unidad de medida relativa aunque, para hablar con exactitud, no podemos decir que se trate de una "unidad de medida" propiamente dicha (de ahí el calificativo de "relativa"). Hablamos del decibelio. ¿Es cierto que es algo tan complicado?.

Como ocurre con otros conceptos, la web está plagada de información sobre ello, aunque desgraciadamente gran parte de esa información no es entendible con facilidad por aquellas personas que no están relacionadas directamente con algún sector técnico (electricidad, electrónica, audio, física, radio, televisión, etc...).

Por ello hemos decidido escribir un artículo que trate de clarificar y desmitificar este término, aunque eso será más adelante. Por ahora queremos dejaros una herramienta que os será de mucha utilidad para comprender lo que diremos en el mencionado artículo y, por qué no, si os dedicáis profesionalmente o no a ejercer alguna actividad relacionada con temas técnicos.

Clica en "Leer completo..." para más detalles.

Leer más...
Radioaficionados
Receptor de cristal (radio galena) para FM

Publicamos este artículo como respuesta a una solicitud de asesoramiento de Silvio, que nos visita desde Cali - Valle del Cauca (Colombia).

Silvio nos comenta las dificultades que está enlocontrando en la puesta en marcha de un "receptor de cristal" o "radio galena", cuyo circuito ha sido adaptado con la intención de recibir las señales de la banda de FM comercial (88-108 MHz). Dicho receptor lo ha construido en base a la información extraida de cierta página web.

Con este artículo queremos arrojar un poco de luz sobre como llevar a la práctica con éxito la construcción de este tipo de receptores de onda corta y VHF, con demodulación de FM incluida, en base a nuestra experiencia y a la información que tenemos de aquellos fabricantes que en su dia los comercializaron.

Aunque para muchos, el hecho de poder oir señales de frecuencia modulada (FM) usando un receptor de galena con detección a diodo de cristal es imposible, desde aquí queremos hacer ver que SI se puede y en este artículo vamos a explicar las razones que existen para ello.

Si deseas saber más clica en "Leer completo..." por favor.

Leer más...
Miscelanea
La circunferencia, el círculo y el número PI (π)

La mayor parte de las personas que vivimos en paises desarrollados, quizás porque estamos acostumbrados a obtenerlo todo con suma facilidad y/o que las cosas vengan a nosotros como caídas del cielo, a menudo las damos por sentadas de manera automática.

Practicamente en ningún momento nos preguntamos porqué algo es o se produce de una determinada manera. Nos basta con saber que tal o cual cosa es como es y punto, lo aceptamos sin reservas.

Algo así nos ha ocurrido a muchos cuando asistíamos a la escuela, en épocas pasadas. ¿Recuerdas cuando aprendiste la fórmula para hallar la longitud de la circunferencia?. ¿O cuando te enseñaron la fórmula para calcular la superficie del círculo?. Todos las aceptamos sin pestañear, y pocos fuimos los que nos preguntamos de donde habia salido el famoso número PI (π). Muchos daban por sentado que aquello era así porque lo decía nuestro profesor de matemáticas y se acabó.

Pero en realidad, esas conocidas fórmulas han salido de algún sitio o, mejor dicho, han sido promulgadas por una o varias personas después de haber dedicado mucho tiempo y esfuerzo al estudio de estas figuras geométricas.

¿Te gustaría saber más sobre este tema y conocer como se han llegado a obtener las mencionadas fórmulas y como están relacionadas entre ellas?... ¡Pues clica en "Leer completo..." ya!.

Leer más...
Práctica
Detector de polaridad

Uno de los mayores errores que se cometen al enchufar equipos electrónicos a baterías o a fuentes de alimentación de corriente continua es la inversión de polaridad. ¿Te ha ocurrido esto a ti alguna vez al instalar una emisora de radioaficionado en tu automóvil y conectarla a su circuito eléctrico?.

Cuando se da esta circunstancia uno se pregunta... "¿como me ha podido pasar a mi?. No es posible, estoy viviendo un mal sueño, una pesadilla. Yo siempre voy con muchísimo cuidado. Pronto despertaré...". Pero no. Por desgracia no se trata de un sueño sino de una situación real. Has cometido el error más frecuente cuando se manejan equipos electrónicos con alimentación continua exterior; la temida inversión de polaridad.

Para que esto no te vuelva a pasar vamos a enseñarte a construir un sencillo aparato con el que podrás detectar muy facilmente la polaridad de una tensión continua desde 2 hasta 230 voltios aproximadamente. También te indicará, caso de que no se trate de una tensión continua, si dicha tensión es alterna.

Mediante unos diodos LED bicolor este tester te marcará, sin ninguna posibilidad de error, cual es el polo positivo y cual el negativo de una determinada toma de corriente eléctrica o si por contra se trata de una tensión alterna. ¿Te interesa?. Sigue leyendo, por favor...

Leer más...
Teoría
El puente de Wien (II)

Segundo y definitivo artículo sobre este particular circuito electrónico.

Una vez que hemos analizado a fondo el puente de Wheatstone en el post anterior, el siguiente paso es abordar de lleno el funcionamiento y los detalles del puente que le ha dado nombre a estos artículos, es decir, el puente de Wien.

Si aún no has leido el primero te aconsejamos que lo hagas antes de abordar este, ya que en aquel se dan las pautas y se sientan las bases necesarias para llegar a entender el funcionamiento de este circuito.

Allí vimos como conseguir equilibrar el puente eligiendo apropiadamente el valor de las resistencias que lo forman, usando una fuente de corriente continua. También pudimos comprobar que el puente de Wheatstone puede funcionar y equilibrarse además con una fuente de corriente alterna.

Partiendo de este último detalle, vamos a continuar ahora estudiando como es posible llevar al equilibrio a este nuevo puente, el puente de Wien. Pasa dentro, por favor.

Leer más...
Noticias
Revista 27 MHz - Fascículo 3

Fascículo Nº 3 de la revista "27 MHz" dedicada a la CB (Banda Ciudadana).

Extracto de su contenido: Construir una antena base "Ringo" para CB, teoría de antenas (III), adaptador de antena, diferentes tipos de antenas, frecuencímetro digital, los diodos y sus aplicaciones, código Q, etc...

Leer más...

El puente de Wien (I)

El puente de Wien es un circuito electrónico compuesto por una combinación de resistencias y condensadores en serie-paralelo. Se utiliza generalmente en instrumentos de medida y generadores de señales de baja frecuencia para laboratorios y servicios de electrónica.

Cuando se implementa como oscilador, el puente de Wien puede generar frecuencias de entre 1 Hz a 1 MHz aproximadamente y entregar una forma de onda perfectamente senoidal.

Fue usado por uno de los fundadores de la firma Hewlett-Packard (William Hewlett) en la tesis final que elaboró para conseguir el máster en la Universidad de Stanford. Posteriormente, William Hewlett junto con David Packard fundaron la empresa "Hewlett-Packard" y el primer producto que comercializaron fue el generador de señales de B.F. de precisión modelo HP-200A, basado en el circuito al que nos referimos en este artículo, el cual se hizo muy popular por su baja distorsión.

¿Por qué queremos hablar del puente de Wien?. Por una sencilla razón. En nuestro próximo artículo de la sección de "Radioaficionados" publicaremos un montaje basado en este circuito, aunque no precisamente trabajando como oscilador.

Por el momento, vamos a ver de forma básica, con la menor cantidad de matemáticas posibles, y con palabras comprensibles por todos, como funciona y que se puede hacer con este artilugio electrónico estudiando su diseño y configuración.

Concretamente, el llamado puente de Wien está formado por cuatro resistencias y dos condensadores y dispone, como todos los puentes de estructura similar, de una entrada y una salida. Su esquema eléctrico es el siguiente.

El puente de Wien se usa siempre en circuitos de corrientes o señales alternas. Por este motivo y en un principio, su grado de complejidad es más alto que otros puentes que hacen su trabajo con corriente continua, siendo estos últimos de funcionamiento más asequible y más fáciles de comprender.

Por este motivo, antes de continuar, será mejor que hablemos sobre otro tipo de puente de mecánica mas sencilla de asimilar para posteriormente, una vez que tengamos claro el asunto, adentrarnos en el funcionamiento del primero. Nos referimos al puente de Wheatstone.

EL PUENTE DE WHEATSTONE
Como hemos dicho en el párrafo anterior, el puente de Wheatstone quizás sea uno de los más sencillos y de funcionamiento más facilmente comprensible. Está compuesto simplemente por cuatro resistencias. Mira la ilustración.

Básicamente este puente se utiliza para la medida de resistencias cuando se requiere una alta precisión. A su salida se incorpora un galvanómetro de cero central y su entrada se alimenta con una tensión continua. Como veremos, esta tensión continua puede estar compuesta perfectamente por pilas comunes, ya que no se necesita una gran estabilidad en la alimentación. La cosa quedaría de la siguiente manera.

Este sería el puente de Wheatstone en su versión más elemental. No obstante, para tratar de explicaros su funcionamiento de la manera mas simple posible e intentar hacéroslo mas fácil vamos a "recolocar" sus componentes en el diagrama, eso sí, sin modificar para nada su disposición ni su conexionado.

Se trata solo de darle un cambio de orientación "esquemática" a las cuatro resistencias y posicionarlas de forma totalmente vertical en vez de inclinadas. Será exactamente el mismo circuito, sin embargo, estamos seguros de que representándolo así entenderás mejor lo que vamos a explicar posteriormente.

Observando atentamente el esquema anterior se puede deducir que, si elegimos los valores adecuados para las resistencias, podemos conseguir que la tensión en el punto "A" sea idéntica a la del punto "B". Una vez igualadas estas dos tensiones, la aguja del galvanómetro intercalado entre esos dos puntos no se inmutará y permanecerá inmóvil señalando el cero central ya que a su través no circulará corriente alguna. Se dice entonces que el puente está equilibrado.

Aunque creemos que este artículo podrá ser leido también por personas documentadas en las leyes de Kirchhoff que, obviamente, sabrán resolver matemáticamente el puente de Wheatstone, queremos cumplir lo que prometimos al principio con relación a usar lo menos posible las matemáticas y así hacer entendible el circuito a un mayor número de lectores. Con este propósito pensamos que lo mejor será poner un ejemplo práctico y usar un poco de sentido común. Observa por tanto la siguiente ilustración a la cual nos referiremos a partir de ahora.

Hemos asignado ciertos valores a las resistencias que componen el circuito y, además, hemos indicado las intensidades que las recorren y sus respectivas caidas de tensión. Tenemos que aclarar que en este caso usamos el sentido convencional de la corriente eléctrica y no el real, es decir, que la dirección representada es contraria al desplazamiento de los electrones. No obstante, en ambos supuestos el resultado final será el mismo.

Observa los divisores de tensión formados por R1-R2 y por R3-R4. En el primero de ellos R1 es idéntica a R2 y de un valor de 3 ohmios. En el segundo, R3 también es igual a R4 y de un valor de 6 ohmios. Por lo tanto, no hace falta ser un superdotado para adivinar que las tensiones de los puntos "A" y "B" valdrán justo la mitad de la tensión de la batería, en este caso 6 voltios.

Se deduce de esto que la tensión que podemos medir entre los puntos "A" y "B" es nula puesto que, al estar las caidas de tensión de las resistencias en oposición, estas se cancelan mutuamente.  Expresarlo numericamente es sumamente fácil:  6V - 6V = 0V.

Para los que no lo tienen claro, podemos dibujar el mismo puente de Wheatstone anterior de manera distinta y de este modo tener otro punto de vista. Lo veremos "desde otro ángulo". El circuito es exactamente el mismo con la salvedad de que, para clarificar ideas, usaremos dos baterías idénticas en vez de una sola, lo cual no cambia en absoluto su funcionamiento ni su configuración. El esquema al que nos referimos sería el siguiente.

Fijate que lo único que hemos hecho ha sido añadir otra batería del mismo voltaje (12V) para alimentar la malla de la derecha (R3 y R4) de manera independiente. Sin embargo, ahora podemos apreciar más claramente como ejercen su efecto las caidas de tensión de 6 voltios existentes en las resistencias R2 y R4. Observa como están enfrentados sus polos negativos y positivos, estos últimos a través del instrumento de medida.

Al tratarse de dos tensiones idénticas, la corriente a través del instrumento no puede circular ni en un sentido ni en otro, ya que una tensión se opone y cancela a la otra. Por eso, a través del galvanómetro no circula corriente alguna.

Para ilustrarlo, imagina una situación en la que dos personas con exactamente la misma fuerza se empujan la una a la otra. No se mueven ninguna de las dos de su sitio, ya que sus fuerzas son idénticas y la de una contrarresta y anula la de la otra persona.

Hemos de decir, y esto es importante, que la versión que hemos expuesto con dos baterías ha sido solo con la pretensión de aclarar el funcionamiento del puente. En la práctica siempre se usa una sola batería o una sola fuente de alimentación.

Afirmamos entonces que con las resistencias y la batería indicadas hemos conseguido equilibrar el puente. Pero aquí no acaba la cosa. Podemos continuar afirmando que con esas resistencias y con cualquier batería el puente seguirá estando en equilibrio.

Efectivamente, si cambiamos el valor de la batería y ponemos una de 24 voltios, por ejemplo, nuestro puente de Wheatstone sigue equilibrado. Solo tenemos que echar un vistazo a la siguiente ilustración para comprobarlo.

Vemos como se han duplicado las intensidades de corriente y también las caidas de tensión en las resistencias. No obstante, la tension entre los puntos "A" y "B" sigue siendo nula, ahora ya con 12 voltios en cada resistencia en vez de 6. El puente conserva su equilibrio inicial. Sigue sin circular corriente a través del galvanómetro.

Esto nos indica, como dijimos al principio, que no se necesita una tensión demasiado estable para utilizar el puente ya su estado de equilibrio no depende del voltaje aplicado ni de las variaciones de tensión de la batería utilizada.

Además de lo anterior, esto nos hace vislumbrar que si con cualquier tensión, usando los valores de resistencias indicados, el puente sigue equilibrado, también seguirá equilibrado si se le aplican tensiones alternas a su entrada. Quédate con esta idea, ya que será importante cuando estudiemos más adelante el puente de Wien.

USO DEL PUENTE DE WHEATSTONE
Ya hemos comentado que el uso a que se destina este puente es casi exclusivamente para medidas de resistencias en aquellos casos en los que se requiere una alta precisión. Para ello, hay que hacerle ciertas modificaciones o, mejor dicho, sustituciones. Observa la siguiente imagen.

Como puedes ver, R1 se ha eliminado como resistencia inherente del circuito y R3 se ha sustituido por un potenciómetro llamado RCAL. Este último no es un potenciómetro convencional. Se trata de un potenciómetro calibrado de precisión.

Este componente dispone de una escala en la que podemos leer directamente el valor óhmico que presenta entre dos de sus terminales. Puedes ver un modelo de este componente en la ilustración.

En el sitio que antes ocupaba R1 es donde ahora colocaremos la resistencia incógnita de la que desconocemos su valor y que deseamos medir. La hemos representado como Rx.

El funcionamiento de nuestro medidor de resistencias de precisión basado en el puente de Wheatstone es sumamente sencillo después de haber estudiado su manera de actuar.

Las resistencias R3 y R4 siguen siendo de idéntico valor. Una vez colocada la resistencia incógnita Rx en el lugar mencionado, el que antes ocupaba R1, solo nos queda girar el potenciómetro calibrado hasta conseguir que el galvanómetro marque justo el cero central.

En ese momento, la escala del potenciómetro calibrado nos indicará exactamente cuanto vale la resistencia incógnita Rx, la cual deberá tener un valor idéntico al que tenga en ese instante el potenciómetro, ya que entonces el puente estará equilibrado.

Como ya hemos aclarado, el estado de la pila usada no va a afectar en absoluto al equilibrio del puente, por lo que la exactitud de la medida estará más que asegurada.

La precisión del puente estará determinada únicamente por la exactitud del valor de las resistencias R3 y R4, y por la fidelidad de la escala del potenciómetro calibrado.

CONDICIÓN GENERAL DE EQUILIBRIO
Hemos visto que para equilibrar el puente de Wheatstone se necesitan dos condicionantes; el primero que las resistencias R1 y R2 sean del mismo valor entre sí, y el segundo que las resistencias R3 y R4 también sean de valor idéntico. Sin embargo, no es esta la condición más general de equilibrio del puente.

Por ejemplo, en la ilustración que sigue, cada resistencia tiene un valor diferente de las demás y, no obstante, aseguramos que este puente estará en perfecto equilibrio. ¿Adivinas por qué?.

El punto de equilibrio no se obtiene solo cuando en cada uno de los puntos "A" y "B" está presente la mitad de la tensión de la pila que alimenta el puente. Lo verdaderamente importante es que en ambos puntos exista justo la misma tensión. Podemos comprobarlo en el siguiente esquema al que se le han añadido los datos de tensiones y corrientes.

Existe un punto en común entre los casos anteriores y este mediante el cual podemos extraer una conclusión más acertada sobre cual es la condición general para que el puente esté equilibrado.

En el primer puente que consideramos, el cociente que se obtiene al dividir los respectivos valores de las resistencias de la rama izquierda (R1/R2) es 1, y el cociente de los valores de las resistencias de la rama derecha (R3/R4) también nos da 1. Lo vemos numericamente:

Si hacemos la misma operación con los valores de las resistencias de este último puente tenemos los siguientes resultados:

Como acabamos de comprobar, en ambos puentes se cumple la igualdad de los cocientes de las resistencias de ambas ramas. Es decir que:

Esta si es la condición general necesaria para que el puente de Wheatstone alcance el equilibrio. Podemos escribir el enunciado de la siguiente manera:

"El puente de Wheatstone estará equilibrado cuando el cociente arrojado por los valores de las resistencias de la rama izquierda sea igual al cociente que arrojan los valores de las resistencias de la rama derecha"

Con lo expuesto hasta el momento creemos que ya estaremos preparados para abordar el estudio del puente de Wien, circuito en que se basará el próximo montaje que publicaremos en la sección de "Radioaficionados".

Esperamos vuestras sugerencias, aportaciones, dudas, etc... para lo que teneis a vuestra disposición el sistema de comentarios. Nos vemos pronto amigos.

 
C O M E N T A R I O S   
El puente de Wien (I)

#3 Norman Alfonzo » 13-03-2020 19:50

NO es correcto decir que la tensión entre los puntos A y B sea la "MISMA" lo correcto es decir que deben tener el mismo volteje.

Norman Alfonzo Venezuela

RE: El puente de Wien (I)

#2 gsuarencibia » 19-01-2017 14:31

ok, mas claro....imposible

Excelente

#1 Juan Belmonte » 27-03-2016 18:15

Espero con ansiedad el segundo artículo. Muchas gracias.

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.