Acceso



Registro de usuarios
Contáctenos
Teoría
El Alfa y la Beta del transistor BJT

¿Que aficionado a la electrónica no ha oido hablar alguna vez de la "Beta" (β) de un transistor?. Para algunos quizás el término "hFE" les será más conocido que el anteriormente mencionado, aunque básicamente son la misma cosa.

Otro parámetro del transistor posiblemente menos conocido y del que suele hablarse más escasamente, aunque ambos están intimamente relacionados como vamos a ver en la última sección de este artículo, es el llamado "Alfa" (α), también denominado "factor de mérito".

Sin embargo, oir hablar a menudo de algo y saber exactamente de que se trata son dos asuntos muy diferentes ¿no te parece?.

Sabemos que en la red pueden encontrarse miles de páginas que hablan sobre este tema. No obstante, en muchas de ellas solo pueden leerse textos "copy & paste" procedentes de libros técnicos, la mayoría de veces áridos, pesados de leer y difíciles de asimilar. En otras, la información no está completa o contiene errores que desorientan y confunden al lector.

Con el presente artículo queremos hacer llegar esta información a nuestros visitantes por una parte de forma amena y sin complicaciones, y por otra sumergiéndonos matematicamente en la relación que une a los dos parámetros mencionados para aquellos que les guste profundizar en estos temas ¿Te subes a este carro?.

Leer más...
Otros Temas Interesantes
Noticias
Curso técnico de utilización del polímetro digital

Curso técnico de utilización del polímetro digital. Excelente y completo tutorial de uso del polímetro digital, con 210 páginas de información práctica sobre el uso de este instrumento.

Aprenderás a manejar tu polímetro digital como un verdadero profesional desde lo más básico. Contiene instrucciones para saber comprobar dispositivos y circuitos electrónicos, así como los conocimientos necesarios para la resolución de averias en equipos eléctricos.

Para más información clica en "Leer completo..."

Leer más...
Radioaficionados
Cambiar C.I. de audio a President Taylor ASC (II)

Continuamos ahora con la segunda parte de la información dedicada a la reparación de una emisora de C.B. President Taylor ASC. Como habrás podido observar en la primera parte, hemos querido presentarte estos artículos de la manera más sencilla posible, con multitud de fotografías que aclaran los conceptos explicados en el texto. Hemos intentado que tú, sin ser un profesional, puedas repararte tu propia emisora y... ¡por qué no!... repararle la emisora a tu amigo o compañero de trabajo.

Lo que viene a continuación tiene una importancia capital para que esta avería no vuelva a reproducirse. Deberás seguir los pasos indicados al pié de la letra, sin desviarte lo más mínimo de los consejos que se indican. Generalmente la avería descrita se produce por acumulación de calor en el circuito integrado LA4446. Con el paso del tiempo, la transmisión al chasis de las altas temperaturas que se producen en el interior de este componente no se efectúa de una manera solvente debido principalmente a que la pasta de silicona térmica utilizada para obtener una correcta transmisión del calor desde el integrado hasta el chasis de la emisora se ha secado, amén de que han sido poco generosos con ella. Dicho chasis, junto con la pequeña aleta adaptadora intercalada, hacen las veces de disipadores de este calor.

Pero si quieres saberlo todo al respecto, solo tienes que hacer clic en el botón "Leer completo...".

Leer más...
Miscelanea
Luz trasera para bicicleta (piloto) sin pilas

¿Eres de los que les gusta pedalear?. Si es así, es muy probable que cuando te subes a la bicicleta quieras que tu seguridad no corra peligro.

Algo que te puede ayudar mucho en este sentido, y que no debería faltar nunca en el equipo de un ciclista, es una luz trasera o piloto que sea visible a muchos metros de distancia.

Dicho dispositivo no debería depender del nivel de carga de unas pilas o unas baterías sino que ha de ser un sistema autónomo e independiente, que se ponga en marcha y se ilumine de manera automática en cuanto se inicie la marcha, indicando a los demás nuestra presencia en la carretera.

Pero además, este piloto debería seguir iluminado aunque detuviéramos nuestra bicicleta y mantener la luz indicadora de nuestra posición sin necesidad de continuar pedaleando. Insistimos, todo ello sin usar pilas ni baterías.

Te presentamos en este artículo un sistema de iluminación trasera para bicicletas sin mantenimiento de ningún tipo, del cual no tendrás que preocuparte nunca más ya que estará siempre listo en el momento en que subas a tu vehículo y continuará dando servicio cuando te pares. ¿Te interesa?.

Leer más...
Práctica
La soldadura

"Teoría sin práctica es parálisis y práctica sin teoría es ceguera". Con la primera parte de esta frase, cuya autoría desconocemos, podemos resaltar la importancia de que cualquier cosa que estudiemos siempre vaya acompañada de ejercicios prácticos. De nada en absoluto nos sirve estudiar muy a fondo cualquier rama del saber si luego somos incapaces de poner en práctica lo aprendido. ¿Cuantos inventos han podido no ver la luz si su inventor no hubiera llevado a la práctica la idea, basada en su conocimiento teórico, que tuvo en un momento determinado?.

La segunda parte de la frase es tan cierta como la primera y, por desgracia, se da con bastante más frecuencia que su compañera en la vida real. Cuantas veces hemos contratado a un "profesional" para que nos haga un trabajo y al final, cuando ha terminado, vemos "la chapuza" que nos entrega. ¡Cuanta razón tenía Leonardo Da Vinci cuando expresó lo siguiente!: "Los que se enamoran de la práctica sin la teoría son como pilotos sin timón ni brújula que nunca podrán saber a donde van". Esto nos confirma que "práctica sin teoría es ceguera".

Pues bién, todo ello trasladado a la radio y la electrónica tiene una importancia decisiva. Por lo tanto, vamos a practicar un poco con algo esencial para construir nuestros circuitos de forma apropiada. ¿Que tal si aprendemos a soldar correctamente?. ¿Te gusta la idea?

Leer más...
Teoría
Cálculos con resistencias I

En un artículo anterior ya hemos hablado sobre la ley de Ohm y hemos desarrollado las tres fórmulas a las que podemos acudir para solucionar un determinado problema. Sin embargo, eso no basta en la mayoría de las situaciones, siendo necesario que adquiramos la soltura necesaria para afrontar con éxito los casos reales a los que nos veremos obligados a hacer frente.

Para adquirir esa soltura, no nos queda mas remedio que practicar, practicar y practicar. ¿Recuerdas aquella frase que mencionamos en uno de nuestros artículos?; "Teoría sin práctica es parálisis y práctica sin teoría es ceguera". Para que no nos quedemos "paralizados", tenemos que habituarnos a ensayar con la ley de Ohm a poco que tengamos oportunidad.

Bién es verdad que a veces la práctica necesaria para el ejercicio de alguna disciplina es complicada de conseguir, sobre todo en los tiempos difíciles que nos ha tocado vivir, en los que las dificultades a veces nos agobian y no nos queda apenas tiempo libre.

Para intentar paliar esto en lo posible, este artículo irá acompañado de un videotutorial que los usuarios premium podrán bajar de la zona de descargas. Esperamos que resulte de vuestro agrado. ¡Comencemos a calcular!.

Leer más...
Noticias
AFHA - Electricidad Teórico Práctica - Tomo 2

Tomo 2 del curso de Electricidad Teórico Práctica de AFHA.

Leer más...

Receptor a reacción para Onda Corta (III)

Comenzamos aquí el tercer y último artículo de la serie dedicada al receptor a reacción para onda corta.

Una vez que en los dos artículos anteriores hemos desarrollado la necesaria información sobre algunos pormenores y características concretas de este receptor, aplicables también a otros receptores, pasamos a continuación a describir su funcionamiento general y a exponer las especificaciones constructivas para finalizar con éxito su montaje.

Ya hemos explicado el sistema utilizado para regenerar la señal captada por la antena por medio de la realimentación positiva.

También hemos hablado sobre la importancia del circuito resonante de sintonía, de su "Q" o factor de calidad y de la necesidad de una toma intermedia en el mismo para atacar la base del transistor amplificador de RF, de manera que dicho circuito resonante no resulte amortiguado.

El cuidado de estos detalles redundará en una mayor sensibilidad y mejor selectividad de este receptor el cual, no nos cabe ninguna duda, dará muchas alegrias a todos aquellos que acometan su construcción.

En el presente artículo veremos su funcionamiento general punto por punto de manera que al final estaremos en condiciones de contestar cualquier pregunta que se nos formule sobre él. ¡Síguenos!.

Para empezar vamos a acompañar a la señal de radiofrecuencia (RF) durante su camino, desde que entra a través de la antena. ¡Comenzamos!.

EL RECORRIDO DE LA R.F.

Las señales de RF son captadas por la antena y aplicadas a la bobina L3, la cual induce en el circuito resonante formado por L2 y C1 solo aquella que hemos elegido según nuestras preferencias, mediante el ajuste del mencionado condensador variable C1.

Como ya hemos explicado en el artículo anterior de esta serie, el condensador C2 extrae la señal escogida de la toma intermedia de la bobina y la aplica a la base de T1, adaptando las correspondientes impedancias y conservando un alto factor de calidad en el circuito tanque. Para saber más sobre la importancia de una correcta adaptación de impedancias te recomendamos el artículo "Por qué adaptar impedancias".

En un principio, la misión del transistor T1 es amplificar todo lo posible la señal, la cual podemos recoger en su colector una vez aumentado su nivel.

 

La señal amplificada continúa su camino y recorre las espiras de L1. El efecto de su paso por este último bobinado es el alma de nuestro receptor. Una vez que esto ocurre la RF elige la ruta más fácil hacia masa, la que le ofrece menos resistencia, y entonces atraviesa el condensador C4 que es practicamente un cortocircuito para ella y C12 que actúa de desacoplo de la batería.

Pero detengámonos un momento en ver que pasa en las bobinas. Cuando la señal de RF circula por L1 induce en L2 el flujo que ha creado en la primera de manera que, tal y como explicamos en su momento, nos encontramos en la base del transistor T1 con la suma de dos señales; la que ha entrado por la antena mas la que induce L1 en L2.

A este respecto debemos decir varias cosas importantes. Por pura lógica deducimos que si invirtiéramos las conexiones de la bobina L1 la señal inducida en vez de sumarse a la recibida por la antena se restaría de ella. Entonces en vez de obtener un aumento de la sensibilidad de nuestro receptor obtendríamos el efecto contrario.

En este último caso estaríamos usando realimentación negativa en vez de positiva, por lo que evidentemente hay que cuidar este punto. Veremos más adelante que la realimentación negativa se usa y resulta muy útil en determinadas ocasiones, pero sin embargo no es deseable utilizarla aquí.

Otro dato interesante es que el flujo creado por L1 no solo se induce en L2, también se induce en L3 que es el bobinado que conecta la antena. Es más, incluso L2 induce también su flujo en L3.

La consecuencia inmediata de esto es que parte de la señal resulta radiada, lo cual puede crear interferencias en receptores cercanos.

Particularmente esto último se convertiría en un grave problema si la realimentación positiva que se aplica es excesiva, ya que nuestro receptor produciría la RF por sí mismo (o como diría un filólogo latino motu proprio), es decir, se transformaría en un pequeño transmisor de radio.

Entonces no tendríamos un receptor, sino un oscilador o generador de RF conectado a una antena la cual emitiría la señal que se ha originado. Por lo tanto, la señal realimentada desde L1 jamás debe tener un nivel muy elevado (nunca superior a la señal original captada por la antena). ¡Cuidado con esto también!.

Necesitamos, pues, urgentemente, un medio para poder controlar la realimentación positiva, o reacción, que estamos implementando en nuestro circuito. Existen varias maneras de llevar esto a cabo. La más simple es haciendo posible que la bobina L1 pueda acercarse y alejarse a voluntad de L2, de manera que así controlaríamos el nivel del campo magnético inducido en la última.

Sin embargo, en este receptor vamos a usar un método, digamos, más elegante y a la vez igualmente efectivo. Se trata de controlar la ganancia (nivel de amplificación) del transistor T1 modificando su polarización de base.

Efectivamente, aprovechando la circunstancia de que existe un tramo de la tensión base-emisor del transistor T1 en el que, al modificar su valor, su ganancia también resulta modificada entre márgenes lo suficientemente amplios, usaremos ese sistema para conseguir nuestro propósito.

EL CONTROL DE LA REACCIÓN
Como hemos indicado, para controlar el nivel de reacción usaremos el método de modificar la ganancia del transistor T1. Pero puede que te preguntes... ¿se puede conseguir exactamente el mismo efecto con este sistema que con el de ajustar la distancia entre bobinas?. ¡Claro que si!. Te lo explicamos.

De lo que se trata básicamente es de controlar el flujo magnético que L1 induce en L2. Si controlamos el nivel de la señal de RF que circula por L1 estaremos controlando dicho flujo. ¿Lo entiendes?. Podemos asimilar el efecto que L1 produce en L2 como si de un transformador de corriente alterna se tratara.

Imagina un transformador cuyo primario se ha diseñado para 125 voltios y su secundario para 220 voltios. Si en vez de introducir en su entrada 125V lo atacamos con por ejemplo solo 25V (o sea la quinta parte de 125V), el flujo que inducirá en el secundario será cinco veces menor y no podrá generar los 220V previstos, sino correspondientemente solo una quinta parte de esa tensión, es decir, 44 voltios. ¡Es fácil de entenderlo!... ¿no?.

Por lo tanto, y volviendo a nuestro circuito, podemos equiparar el primario del transformador anterior con L1 y el secundario con L2. Mediante el control de la amplificación del transistor T1 controlaremos el nivel de la señal alterna de RF que circula por la bobina L1 y, como consecuencia, también controlaremos la potencia del flujo que genera, con lo cual también estaremos controlando a su vez el nivel de la señal que se induce en L2. El efecto es el mismo que si estuvieramos modificando la distancia entre bobinas.

Esto lo vamos a conseguir mediante 2 potenciómetros, los cuales hemos señalado en el esquema del receptor como P1 y P2. Estos potenciómetros serán una especie de "grifos" que controlarán (abrirán más o menos) el paso de la señal amplificada hacia el colector de T1 actuando sobre su base. Pero... ¿por qué vamos a usar 2 potenciómetros?... ¿por qué no usar solo uno?.

La respuesta está en las características inherentes a los receptores a reacción. La sensibilidad más elevada que puede conseguirse con este tipo de aparatos se obtiene cuando están a punto de oscilar. Por esta razón tenemos que procurar ajustar la reacción lo más cerca posible del punto de oscilación pero sin llegar a él, porque entonces dejaríamos de oir la emisora seleccionada y además aparecerían los problemas de radiaciones indeseables de RF de los que ya hemos hablado.

Como resulta que este ajuste es bastante crítico, se han dispuesto dos potenciómetros. Con el primero (P1) ejecutaremos un ajuste general de la reacción y con el segundo (P2) tendremos la posibilidad de realizar un ajuste "fino" y "preciso", permitiendonos llegar al punto de reacción ideal con mucha más facilidad y exactitud.

Por lo tanto, en este receptor dispondremos de un control "general" (los ingleses lo llaman "coarse") que estará a cargo de P1, mediante el cual produciremos grandes cambios en la reacción, y otro control "fino" (al que los ingleses llaman "fine") que estará comandado por P2 y que solo modificará la reacción levemente a fin de conseguir la precisión necesaria.

Ya solo nos queda hablar sobre como se realiza la detección de la señal de RF para obtener el audio y posteriormente aplicarlo al amplificador de BF. Quizás te parezca mentira pero, si eres asiduo lector de nuestros artículos, seguro que sabes como realiza nuestro receptor el proceso de la detección.

LA DETECCIÓN O DEMODULACIÓN DE LA RF
Te remitimos a continuación a nuestro artículo titulado "Como mejorar el receptor de galena". Si te fijas, el último receptor del que hablamos allí tiene ciertas similitudes con el del presente artículo. Te mostramos su esquema en la siguiente ilustración.

Como seguro que ya has notado, una de las cosas evidentes que podemos observar es que le falta el devanado que provoca la reacción. Sin embargo, la demodulación de la señal de RF sigue el mismo principio en ambos receptores. Efectivamente, es el diodo base-emisor el que detecta la RF, por lo que podemos extraer la señal de audio amplificada del colector del transistor.

Para que entiendas esto fíjate en la siguiente ilustración. En ella puedes ver la llamada curva de entrada del transistor en emisor común. En el eje de abscisas (el horizontal) se ha representado la tensión aplicada entre base y emisor (Vbe), lo que corresponde a la señal de RF con que se ataca a dichos electrodos. Esta es la señal completa de RF recibida por la antena. Por otra parte, en el eje de ordenadas (el vertical) se representa la intensidad de corriente de base (Ib) que corresponde a cada valor que toma la tensión base-emisor Vbe.

Sin embargo, advertimos como la intensidad de corriente de base, debido al estratégico punto de polarización estática base-emisor conseguido mediante R1, solo "ve" una de las semiondas de la señal. Se ha efectuado la demodulación de la señal. La intensidad de corriente de colector sigue fielmente a la de base, por lo que en su circuito está presente y amplificada la señal detectada.

No obstante, y volviendo a nuestro receptor a reacción, en el colector del transistor T1 conviven las dos señales al mismo tiempo; la de RF y la de audio detectada.

Para la señal de RF solo existe L1 en el circuito de colector, ya que el grupo RC formado por R3 y C4 es asimilado como un verdadero cortocircuito al no ofrecer prácticamente resistencia alguna a su paso.

Sin embargo, para la señal demodulada de B.F. el cortocircuito resulta ser la bobina L1, actuando R3 como resistencia de carga de colector y C4 como filtro para restaurar correctamente la señal de audio. Dicha señal se extrae mediante el condensador C5 de 10μF y es encaminada al amplificador de BF.

Este último amplificador está constituido por un circuito integrado LM386 el cual no necesita de mayores explicaciones, ya que se trata de un montaje clásico y de simple concepción.

Hasta aquí los artículos dedicados a nuestro receptor a reacción. Esperamos que hayas disfrutado de su lectura. Pronto, en la sección de descargas, nuestros suscriptores dispondrán de toda la información práctica necesaria para su construcción, incluyendo el diseño de la placa de circuito impreso, valores de componentes y todos los detalles constructivos de las bobinas. ¡Hasta la próxima!.

 
C O M E N T A R I O S   
RE: Receptor a reacción para Onda Corta (III)

#3 Antonio González Mén » 03-03-2017 17:00

Me parece muy interesante este montage

RE: Receptor a reacción para Onda Corta (III)

#2 Luís Marrega » 11-01-2016 15:31

Olá, eu possuo um receptor de 9 faixas com FM.
O receptor: "Transglobe Philco" fabricado no Brasil. Ele funcionava bem, de repente parou, eu já verifiquei tudo, a primeira coisa foi a fonte de alimentação que está perfeita. agora só resta examinar o circuito!
Caso eu não consiga nenhum resultado... só me resta leva-lo à um técnico de eletrônica!

É isso aí.
Abraço

tecnico radio y television desde 1962

#1 andré » 28-12-2015 18:48

es muy agradable ver como explicas el tema , muy didactico y apasionante creo para los que comienzan y reconfortante para recordar el tema para los ancianos como yo !!! :lol:

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.