Acceso



Registro de usuarios
Contáctenos
Teoría
Telegrafía sin hilos - La radio

A pesar de que tanto el telégrafo como el teléfono, utilizando lineas de cables eléctricos, cumplían a la perfección su cometido, el hombre quería más. Debería ser posible poder transmitir de alguna manera la información precisa sin necesidad de utilizar ningún tipo de cableado. De esa manera no existiría la limitación impuesta por los cables, los cuales había que desplegarlos a través kilómetros y más kilómetros de linea. La verdad es que se estaba preparando el camino para el telégrafo sin hilos y la radiotelefonía desde los alrededores de 1870.

Como ocurrió con el telégrafo con hilos, es muy complicado asignar el invento del telégrafo inhalámbrico o el de la radio a una sola persona. Desde James Clerk Maxwell hasta Alexander Stepánovich Popov, pasando por Michael Faraday, Heinrich Rudolf Hertz, Guillermo Marconi, Nikola Tesla y muchos otros científicos de la época contribuyeron con su granito de arena a la consecución del invento.

Los científicos sabían que el primer paso era conseguir producir las llamadas ondas electromagnéticas de alta frecuencia. Posteriormente a eso ya vendría la manera de dominarlas y de amoldarlas convenientemente para conseguir el objetivo, el cual no era otro que la transmisión de información a largas distancias sin necesidad de utilizar tendidos de cables eléctricos. En este artículo hablamos de ello. ¿Nos sigues?.

Leer más...
Otros Temas Interesantes
Noticias
RECEPTOR DE HF SIN BOBINAS

RECEPTOR DE ONDA CORTA FACIL DE CONSTRUIR

En ocasiones, las bobinas han sido para el aficionado a la radio un verdadero calvario. Unas veces porque no se especifica su valor, otras veces porque no se explica con detalle como construirlas y otras veces porque no se dispone del soporte adecuado para llevarlas a cabo.

Te podemos asegurar que con el receptor que te proponemos hoy no te pasará esto ya que no contiene en su circuitería ni una sola bobina.

Además, te resultará tan sencillo construirlo que seguro que disfrutarás desde el primer momento.

No te pierdas esta información y clica ya en LEER COMPLETO...

Leer más...
Radioaficionados
Microfono Turner +3B. ¡Una leyenda!

Alguien dijo en alguna ocasión que "nada en este mundo es absoluto, sino que todo es relativo".

A mucha gente les encanta el color negro, sin embargo a otras les parece un color horrible.

¿Cuantos equipos de futbol existen en el mundo?... Demos por seguro que hay hinchas para todos ellos. Marcas de automóviles, vestimenta, cortes de pelo... Y podríamos seguir poniendo infinitos ejemplos.

Y es que tiene mucho de verdad el famoso dicho que reza así: "para gustos... colores".

Sin embargo, hay ocasiones en que una gran mayoría de personas parecen estar de acuerdo en su manera de pensar con relación a un elemento, cosa o persona. Es entonces cuando eso se convierte en algo muy especial y único por lo complicado y dificil que resulta que acontezca esa circunstancia.

Así de especial y único fue el micrófono Turner +3B no solo para los aficionados a la C.B., incluso también para aquellos que disponían de equipos VHF, UHF y HF.

Hoy te queremos hablar de este legendario y vetusto pero querido, y aún en la actualidad deseado y muy buscado accesorio para una estación de radio.

Leer más...
Miscelanea
La circunferencia, el círculo y el número PI (π)

La mayor parte de las personas que vivimos en paises desarrollados, quizás porque estamos acostumbrados a obtenerlo todo con suma facilidad y/o que las cosas vengan a nosotros como caídas del cielo, a menudo las damos por sentadas de manera automática.

Practicamente en ningún momento nos preguntamos porqué algo es o se produce de una determinada manera. Nos basta con saber que tal o cual cosa es como es y punto, lo aceptamos sin reservas.

Algo así nos ha ocurrido a muchos cuando asistíamos a la escuela, en épocas pasadas. ¿Recuerdas cuando aprendiste la fórmula para hallar la longitud de la circunferencia?. ¿O cuando te enseñaron la fórmula para calcular la superficie del círculo?. Todos las aceptamos sin pestañear, y pocos fuimos los que nos preguntamos de donde habia salido el famoso número PI (π). Muchos daban por sentado que aquello era así porque lo decía nuestro profesor de matemáticas y se acabó.

Pero en realidad, esas conocidas fórmulas han salido de algún sitio o, mejor dicho, han sido promulgadas por una o varias personas después de haber dedicado mucho tiempo y esfuerzo al estudio de estas figuras geométricas.

¿Te gustaría saber más sobre este tema y conocer como se han llegado a obtener las mencionadas fórmulas y como están relacionadas entre ellas?... ¡Pues clica en "Leer completo..." ya!.

Leer más...
Práctica
La soldadura

"Teoría sin práctica es parálisis y práctica sin teoría es ceguera". Con la primera parte de esta frase, cuya autoría desconocemos, podemos resaltar la importancia de que cualquier cosa que estudiemos siempre vaya acompañada de ejercicios prácticos. De nada en absoluto nos sirve estudiar muy a fondo cualquier rama del saber si luego somos incapaces de poner en práctica lo aprendido. ¿Cuantos inventos han podido no ver la luz si su inventor no hubiera llevado a la práctica la idea, basada en su conocimiento teórico, que tuvo en un momento determinado?.

La segunda parte de la frase es tan cierta como la primera y, por desgracia, se da con bastante más frecuencia que su compañera en la vida real. Cuantas veces hemos contratado a un "profesional" para que nos haga un trabajo y al final, cuando ha terminado, vemos "la chapuza" que nos entrega. ¡Cuanta razón tenía Leonardo Da Vinci cuando expresó lo siguiente!: "Los que se enamoran de la práctica sin la teoría son como pilotos sin timón ni brújula que nunca podrán saber a donde van". Esto nos confirma que "práctica sin teoría es ceguera".

Pues bién, todo ello trasladado a la radio y la electrónica tiene una importancia decisiva. Por lo tanto, vamos a practicar un poco con algo esencial para construir nuestros circuitos de forma apropiada. ¿Que tal si aprendemos a soldar correctamente?. ¿Te gusta la idea?

Leer más...
Teoría
Las válvulas de vacío VI

Bienvenidos al sexto artículo de esta serie dedicada a las válvulas de vacío. Vamos a ver a continuación un receptor que hizo furor hace años, cuando las válvulas termoiónicas estaban en su apogeo y los radioaficionados eran verdaderos "manitas", ávidos de experimentación y deseosos de construir con sus propias manos un receptor de radio.

Describiremos el circuito de un receptor que mejora sustancialmente las características del que estudiamos en el artículo anterior. Utilizaba una técnica llamada "detección por rejilla" y, a pesar de que usa prácticamente los mismos componentes que el "detector por placa" visto en el artículo precedente, el aumento de sensibilidad es considerable por lo que fué bastante usado en su época.

En el siguiente artículo estudiaremos el llamado "detector a reacción" con el que, solo a costa de cierta inestabilidad asumible y perfectamente controlable por el usuario, se obtenía una sensibilidad aún superior a la del detector por rejilla. Pero eso será después de conocer el funcionamiento del primero.

Clic en el botón "Leer completo..." para continuar.

Leer más...
Noticias
Curso de ELECTRÓNICA BÁSICA 07

La LEY DE OHM como nunca te la han explicado

Si se te olvida con facilidad algunas de las tres fórmulas relativas a la Ley de Ohm debes ver este video. Una vez que lo hayas hecho, ya no las olvidarás jamás.

¿Por qué hacemos esta afirmación tan tajante?. Muy sencillo. Porque este video es completamente distinto a todo lo publicado hasta ahora y no se limita a escribir las fórmulas sin más, sino que se explican.

Tendrás que leer esta noticia completamente y posteriormente ver el video para entender por qué decimos esto con tanta seguridad. ¡Adelante!... Pasa dentro...

Leer más...

El generador electromagnético

Existen generadores de corriente de diferentes tipos, y la primera división que podemos hacer de ellos es si son de corriente alterna o de corriente continua. Estos últimos, los de corriente continua, generalmente están basados en fundamentos químicos y/o en la acción de la luz o del calor. Se trata de generadores que proporcionan una tensión constante en sus bornes gracias a la creación de una f.e.m. en su interior generada por una reacción química. Ejemplo de esto son las conocidas pilas en sus diferentes tipos. Sin embargo, en este artículo no vamos a hablar de estos generadores, sino de los mencionados en primer lugar, los de corriente alterna.

Llamados también "alternadores", estos generadores basan su funcionamiento en la inducción electromagnética. Como ya hemos visto en artículos anteriores, cuando un conductor o un solenoide atraviesa las lineas de flujo magnético de un imán se produce en él una corriente inducida. En este artículo vamos a profundizar en este fenómeno, y vamos a hablar sobre el tipo de corriente que es capaz de suministrar un generador elemental de esta clase y algunos pormenores mas sobre ello. ¿Te apuntas?.

EL GENERADOR DE CORRIENTE ALTERNA ELEMENTAL
Ya hemos dicho que el tipo de corriente suministrada por este generador es alterna, es decir, que varía de sentido con las variaciones del campo magnético atravesado. Este generador se compone de un imán en cuyo seno gira un solenoide o bobina. La forma constructiva del conjunto puede variar enormemente pués ya sabemos que tanto si es el imán el que se mueve como si es la bobina, se producirá la generación de energía eléctrica. Nosotros vamos a desarrollar este artículo considerando que es la bobina la que se mueve, siendo esto lo más habitual.

Supongamos para empezar que la bobina de nuestro generador consta únicamente de una espira. Para que puedas entender mejor el modo en que se generan las corrientes inducidas en ella hemos representado una mitad de color azul y la otra mitad de color rojo aunque en realidad esto lo hacemos solo a efectos didácticos. De esta manera llegaremos a comprender con facilidad como se generan las corrientes en lo que en realidad será una bobina en toda regla compuesta de muchas espiras las cuales suman sus efectos. Fíjate como la espira está inmersa en el flujo magnético de un imán, entre sus polos norte y sur. Esas son las llamadas "piezas polares". La espira recibe el nombre de "armadura" y está soldada a unos terminales cilíndricos llamados "colectores" los cuales giran al mismo tiempo que ella.

En íntimo contacto con los colectores, pero sin que giren con ellos, existen unas piezas, generalmente de carbón o un material similar buen conductor, que son las encargadas de recoger la corriente inducida en la espira y llevarla al exterior. Estas piezas se llaman "escobillas" las cuales se conectarán a los cables necesarios para obtener la salida de corriente del generador. Echa un vistazo a la ilustración adjunta para hacerte una idea exacta de lo que hemos descrito.

Antes de seguir adelante vamos a explicar la manera exacta en que se genera la corriente en un conductor que se mueve dentro de un campo magnético. Para ello acudiremos a la llamada "regla de la mano derecha para generadores" la cual dice lo siguiente:

"Si extendemos los dedos pulgar, índice y medio de la mano derecha y los colocamos entre ellos en ángulo recto y perpendiculares entre si (véase la ilustración) tendremos que si el dedo índice señala la dirección del flujo magnético de norte a sur y el pulgar la dirección del movimiento del conductor, el dedo medio nos señalará el sentido de la corriente eléctrica inducida en dicho conductor"

Para entender bién el enunciado fíjate bién en la ilustración que adjuntamos de una mano en la posición descrita en el párrafo anterior. Ahora vamos a aplicar la regla de la mano derecha a un conductor que se mueve dentro de un campo magnético. Mira el siguiente dibujo del cable que se mueve hacia arriba dentro del flujo de los polos de un imán (piezas polares).

Observa como la polaridad de la f.e.m. inducida en dicho cable se corresponde exactamente con la regla de la mano derecha descrita... Fácil ¿no?. Pués ahora aplicaremos esto a la espira que gira entre las piezas polares del imán que hemos mencionado al principio de este tema. Pero vayamos paso a paso.

En primer lugar, y para hacer las cosas bién, vamos a conectar un galvanómetro a las escobillas de nuestro generador. Este instrumento nos va a permitir medir el sentido y la magnitud de la f.e.m. inducida. Además vamos a poder registrar estos parámetros e incluso obtener un gráfico de ellos en el tiempo.

Ahora presentaremos cinco ilustraciones de otros tantos momentos del giro de la espira, numerados del cero (0) al cuatro (4). Supongamos que partimos de la posición "0" según las ilustraciones que siguen. Nuestra espira en estos momentos está en reposo, aún no se mueve, y por lo tanto la corriente inducida es nula al no estar cortando ninguna linea de flujo.

Recordemos, según lo estudiado en artículos anteriores, que para que se genere una fuerza electromotriz es necesario que exista un movimiento relativo entre el conductor y el flujo magnético. Lo mismo da que el que se mueva sea el conductor en relación al campo magnético o que sea el campo magnético el que se mueva con relación al conductor. En nuestro caso será el conductor el que se mueva y el campo magnético el que permanece inmóvil.

En la ilustración numero "1" vemos como hemos hecho que nuestra espira gire en el sentido de las agujas del reloj con lo que se ha generado una f.e.m. en ella. Observa con atención como la parte azul de la espira corta el flujo magnético hacia abajo y la parte roja corta el flujo magnético hacia arriba. Aplica la regla de la mano derecha a una y a otra parte de la espira y verás como las corrientes inducidas en ellas se suman, creándose una f.e.m. del sentido indicado por las flechas rojas. El instrumento conectado a las escobillas nos indica el paso de una corriente de izquierda a derecha, la cual alcanza su máximo valor justo cuando la espira pasa por la posición "1" que es cuando corta el mayor numero de lineas de flujo magnético. ¿Lo ves claro?. Continuemos observando que ocurre cuando la espira sigue girando.

Llegamos a la posición representada en la figura numero "2". En esta posición tenemos la parte azul de la espira justo debajo y la parte roja se ha posicionado arriba. Es justo la posición contraria a la de la figura "0". Al pasar por esta posición no se genera ninguna f.e.m. ya que la espira no corta ninguna linea de flujo. Se puede decir que el movimiento de la espira al pasar por esta posición es paralelo a las lineas del flujo magnético por lo que no corta ninguna de ellas y la f.e.m. inducida vuelve a ser nula, tal y como pasaba en la posición "0". Recuerda que, según lo que llevamos estudiado, si el conductor no corta las lineas de flujo no se inducen corrientes en él, aunque permanezca dentro del campo magnético del imán.

La espira, cuando llega a la posición "2", ha dado justo media vuelta. Si suponemos que su velocidad es constante deducimos fácilmente que el tiempo transcurrido desde la posición "0" a la posición "1" ha sido exactamente el mismo que el que ha tardado desde la posición "1" a la posición "2". Dibujemos un pequeño gráfico en el que vamos a representar en el eje horizontal el tiempo transcurrido en el giro y en el vertical la f.e.m. inducida en la espira. Fíjate bién en los detalles.

El gráfico es lo suficientemente explícito. Observa que la posición "0" es la posición de partida en la que la espira aún no ha empezado a girar ni se ha creado ninguna f.e.m. inducida en ella. Cuando la espira comienza su giro la f.e.m. irá aumentando progresivamente a medida que se acerca a la posición "1", momento este en el que se generará la máxima corriente inducida que será indicada por el instrumento conectado a ella. Desde la posición "1" a la posición "2" la espira comenzará a cortar paulatinamente menos lineas de fuerza ya que su movimiento pasará de ser completamente vertical al pasar por la posición "1" a completamente horizontal, y por lo tanto paralelo al flujo magnetico, cuando pase por la posición "2". El resultado de esto es que la f.e.m. decrecerá paulatinamente hasta llegar a tener de nuevo un valor nulo en la posición "2".

Pero nuestra espira continua girando y entonces desde la posición "2" llega a la posición "3". Observa que esta posición es justo la inversa de la numero "1". Ahora es importantísimo que te fijes en el siguiente detalle: en esta ocasión la parte azul de la espira tiene un movimiento ascendente mientras que la zona roja se mueve hacia abajo, justo al contrario de lo que ocurría cuando pasó por la posición "1". Si aplicamos ahora la "regla de la mano derecha para generadores" nos daremos cuenta que el sentido de la f.e.m. inducida ha cambiado. La corriente generada circula ahora por el instrumento indicador de derecha a izquierda y otra vez alcanza su máximo valor cuando la espira corta mas lineas de flujo, es decir, justo cuando pasa por la posición "3", solo que ahora tiene sentido contrario y la aguja del instrumento refleja este cambio. Lo que ha tenido lugar desde la posición "2" en adelante ha sido un cambio en la polaridad de la f.e.m. inducida en la espira. Tenemos ahora claro que la corriente que va a suministrar nuestro generador electromagnético elemental será alterna ya que periódicamente cambiará de sentido, o lo que es lo mismo, cambiará su polaridad.

Por fin nuestra espira llega a la posición "4", idéntica a la posición "0", en la que ha completado una vuelta entera. De nuevo estamos ante una inducción nula en la que la f.e.m. es cero al pasar por esta posición. Justo al llegar a la posición "4" se ha consumado un ciclo ya que la espira de nuestro generador elemental ha dado un giro completo de 360 grados, o lo que es lo mismo una revolución completa. Vamos a ver el ciclo entero de forma gráfica ya que esto nos servirá de mucha ayuda para entender otros conceptos y será nuestro trampolín para estudiar temas más avanzados.

Observa atentamente que la gráfica correspondiente a las posiciones "3" y a la "4" es idéntica a la que dibujan las posiciones "1" y "2" con la diferencia que ahora los valores son negativos y están invertidos con respecto a los primeros al haber cambiado su polaridad la f.e.m. inducida en la espira. Fíjate como la curva que representa una corriente alterna adquiere una forma característica. Se le llama "onda senoidal", "senoide" o también "sinusoide" (puedes llamarla como te resulte mas fácil).

La magnitud de la senoide producida por un generador de corriente alterna depende de la potencia del imán, el numero de espiras de la armadura y la velocidad a que gire. Este es el tipo de corriente que llega a nuestros hogares con una tensión de 220 voltios. A ella conectamos nuestros equipos eléctricos y electrónicos y las bombillas que nos iluminan. Hablando de las bombillas... ¿No te parece que deberían de producir luz intermitente?. Efectivamente, cuando el generador pasa por las posiciones "0", "2" y "4" las lamparas conectadas deberían apagarse ya que en ese instante la tensión es nula. Sin embargo no las vemos parpadear, aparentemente su luz es continua a pesar de estar alimentadas con corriente alterna. Esto es así por varios motivos; El primero es que el filamento de una bombilla no se apaga de forma inmediata al desconectarse la corriente eléctrica, sino que tiene una inercia que lo mantiene iluminado unos instantes. Además, el ojo humano también tiene una determinada "inercia", es decir, que aunque de forma instantanea desaparezca la fuente de luz que lo impresiona en nuestra retina permanecerá durante unos instantes la imagen que ha producido (en este principio se basa el cine y la televisión).

En Europa la frecuencia de la corriente alterna es inferior que en EE.UU. ¿Que aún no te he dicho lo que es la frecuencia?... ¡¡Tienes razón!!.

SE LLAMA FRECUENCIA AL NUMERO DE CICLOS QUE TIENE UNA CORRIENTE ALTERNA EN CADA UNIDAD DE TIEMPO

Al igual que en muchos otros casos, la unidad de tiempo que se utiliza para este menester es el segundo. Como íbamos diciendo, en Europa la frecuencia utilizada por las compañías eléctricas suele ser de cincuenta ciclos por segundo. A esta unidad también se le conoce como "hercio". Decir que la frecuencia de una corriente alterna es de 50 hercios es lo mismo que decir que es de 50 ciclos por segundo. Por cierto, en EE.UU. la frecuencia utilizada es de 60 hercios.

Entendemos perfectamente ahora que para una corriente alterna de 50 hercios el generador ha de dar 50 vueltas completas en un segundo, es decir, irá a una velocidad de 50 revoluciones por segundo. Si queremos representar esto gráficamente tendremos que dibujar 50 veces seguidas el gráfico anterior en el que representamos 1 ciclo completo. En el gráfico de arriba se han representado 25 de los 50 ciclos de una corriente alterna de 50 hercios (no me quedaba mas espacio para los otros 25 ciclos. En vez de un segundo completo solo pongo la mitad del tiempo).

En Europa, esto significa que en un segundo la f.e.m. pasará 100 veces por un valor nulo de cero voltios, con lo cual, la bombilla que conectemos se apagará y se encenderá cien veces en cada segundo aunque como ya hemos dicho, este parpadeo no lo podemos apreciar. En el próximo artículo más información.

 
C O M E N T A R I O S   
RE: El generador electromagnético

#15 Renzo » 01-03-2019 22:13

¡Buen trabajo! Me ayudó bastante. Gracias.

Excelente Articulo

#14 Leyner Cordoba » 05-10-2017 00:41

Excelente Articulo! Con gran claridad!!
gracias por su aporte :)

¡Enhorabuena por este artículo... y por la WEB!

#13 Maki » 25-08-2013 15:54

Muchas gracias por publicar artículos como este, con la calidad y rigor que os caracteriza. Mi hijo andaba loco buscando por la red la información sobre el generador de corriente alterna y ha acabado encontrándola aquí. Está estudiando física. Ambos os estamos muy agradecidos.

Claridad cristalina y exactitud... Gracias.

#12 Pepeillo » 24-08-2013 14:19

La verdad, me ha sorprendido la claridad cristalina con que se explica en este artículo el funcionamiento del generador electromagnético. Creo que es un magnífico artículo para que lo lean y relean aquellos estudiantes que tengan entre manos esta asignatura. Estoy seguro que les quedará infinitamente claro el asunto.

Muchas gracias a Radioelectronica.es por su esfuerzo.

¡Una perfecta y maravillosa explicación! Gracias.

#11 Manolin » 22-08-2013 02:54

¡Vaya! Por fín encuentro una buena explicación del funcionamiento del generador de alterna, y con todos los detalles. ¡Cuanto la había buscado!. Muchas gracias.

¿Error?. Felipe... ¡no tienes ni idea!

#10 Jorge Gonzalez » 21-08-2013 01:10

Lo que parece estar mal es tu vista y tus ideas Felipe.
La ley de Lorentz está perfectamente explicada mediante la regla de la mano derecha, y desde mi punto de vista se cumple en el ejemplo que se cita a la perfección y sin errores.
La ley de mallas de Kirchhoff no la aplicas correctamente en tu comentario porque:
1. Se trata de una red muy simple (sin un solo nodo, de una sola malla y con solo una d.d.p.), cuyos cambios de corriente están perfectamente representados con flechas y por el sentido del desplazamiento de la aguja del galvanómetro en cada momento. Hablas del "resto de las corrientes" cuando solo existe "una única corriente" perfectamente representada en cada punto del circuito.
2. y más importante. La ley de mallas de Kirchhoff dice: "La suma algebráica de las d.d.p. en los extremos de los diferentes elementos de una malla es cero"... ¡y tu la aplicas a las corrientes!... ¡Verdaderamente, lo que uno puede llegar a leer en Internet de determinadas personas es increible!.
Un saludo, Felipe, y aplícate un poco más en física.

corrección error

#9 felipe » 20-08-2013 22:23

En realidad esta mal el sentido de las corrientes en todas las figuras (ley de Lorentz aplicada a cables portadores de corriente), ademas las espiras y el galvanómetro hacen parte de una misma malla por lo tanto solo hay una corriente que los atraviesa, así que si se cambia el sentido de la corriente que pasa por las espiras habrá que cambiar también el sentido del resto de corrientes (ley de mallas de Kirchhoff).
Saludos!

generadores electromagneticos

#8 omar » 25-02-2013 20:22

:lol: que buena pagina para investigar

un exito!!

#7 leti » 28-08-2012 22:20

muy buena la explicación!!! me ayudo mucho..gracias

uno para mi casa

#6 manuel jf » 31-03-2011 00:44

buenas noches.
antes de nada,felicidades por la web.
sabeis de algun sitio donde se pudiera adquirir las piezas necesarias para fabricar un generador electro magnetico,o una empresa que ya lo comercialize para aplicarlo en mi casa.
gracias.

Nos interesa tu colaboración Fernando

#5 Departamento Tecnico » 17-02-2011 23:59

Muchas gracias por tu ofrecimiento, Fernando. Si alguna persona estuviera interesada puede pedirlo y podrás compartir con él el ejercicio.

Por nuestra parte solo desearte mucha suerte de cara al nuevo examen, el cual estamos seguros que vas a superar sin ningún problema después de comprobar tu nivel de observación, lo cual podemos decirte que ya es mucho.

Gracias de nuevo y un cordial saludo.

De nada

#4 Fernando » 17-02-2011 22:31

No hay problema! cuando ingrese a este sitio despues de encontrar muy poco sobre el tema, finalmente entendi como obtener la fem inducida. Me di cuenta del error cuando no habia forma de aplicar la regla de la mano derecha y que las flechas se chocaban. Hace un mes rendi el final de Fisica 2, que por culpa de un ejercicio como este desaprobe... Hoy estoy a 4 dias de rendir nuevamente. Si les interesa, pongo a disposicion el ejercicio. Saludos!

Tienes toda la razón Fernando

#3 Departamento Tecnico » 17-02-2011 21:24

Efectivamente amigo Fernando "tienes más razón que un santo".

Existía un error en las flechas del interior de la espira del generador en el dibujo número 3, las cuales estaban al revés de como deberían estar. Pedimos sinceras disculpas por ello y sentimos de veras las molestias que esto haya podido causar a nuestros lectores.

Nos alegra mucho tener a gente como tú por aquí, Fernando. Muchísimas gracias por tu observación. Si observaras alguna otra anomalía te estaríamos muy agradecidos si nos la haces saber.

Cambiamos de forma inmediata dicho dibujo numero 3 por el correcto. Un cordial saludo.

Error...?

#2 Fernando » 17-02-2011 20:52

Hola, si no me equivoco el dibujo 3 esta mal. Motivo? Si aplicas la mano derecha te tiene que dar lo mismo que el dibujo 2... aparte las flechas "se chocan" en los anillos!!

Aplicando la regla de la mano derecha al dibujo 3: El indice apunta a la izquierda, el pulgar hacia abajo porque el conductor se mueve hacia abajo y la corriente es entrante hacia la pagina. Espero no haberme equivocado. Saludos!

RE: El generador electromagnético

#1 Antonio » 28-01-2011 23:09

Excelentemente explicado. Ciertamente, desde mi punto de vista, la gente que formáis el equipo de "radioelectronica" sois muy buenos docentes.
Recuerdo que cuando estudié electrónica básica me costó la propia vida entender el funcionamiento de un alternador. Con este artículo no solo he refrescado conocimientos, sino que además he captado algunos detalles que entonces no había logrado entender.
Mi mas sincera enhorabuena por la web. Continuad así, por favor, y no cambiéis nunca. Os necesitamos.
Un saludo desde Valladolid.

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.