Acceso



Registro de usuarios
Contáctenos
Teoría
Protección contra sobretensiones

Todo aquel que ha estado reparando equipos de radio durante cierto tiempo sabe que en multitud de ocasiones llegan al SAT los clásicos "cadáveres" que han sufrido una sobretensión.

Normalmente, la gran mayoría de estos equipos vienen protegidos de origen contra inversiones de polaridad, siempre que se le respete el valor al fusible... ¡claro!, pero no todos vienen con una protección contra sobretensiones.

Para aclararle el significado del término a aquellos que no sepan que significa "sobretensión", se trata de aplicarle a la emisora una tensión de polaridad correcta pero bastante más elevada que la nominal. Por ejemplo, "meterle" los 24 voltios de las dos baterías de un camión en vez de los 12 o 13 voltios necesarios.

Y antes dije cadáveres (entre comillas) porque, para desgracia para su dueño, cuando acontece esta vicisitud provoca un verdadero desastre en el aparato; etapas de potencia de audio, finales y drivers de RF, reguladores, etc... Generalmente la sobretensión arrasa con todo, incluida la billetera de su propietario.

Parece mentira pero, como en muchas otras situaciones de la vida, los accidentes más graves podrían reducirse a cero con un costo mínimo y con algo más de previsión.

Si deseas saber como prevenir una sobretensión en tu equipo de radio, de una manera muy simple, lee el resto de este artículo.

Leer más...
Otros Temas Interesantes
Noticias
El Charco de los Hurones (Cádiz)

Hoy quiero presentaros otro lugar hermoso de mi querida provincia de Cádiz, donde los amantes de la naturaleza van a disfrutar enormemente. Es un lugar espectacular que no deja indiferente a nadie. Se trata del conocido como "Charco de los Hurones", lugar a pié del embalse del mismo nombre.

Tendrás que ir por la carretera de Algar, desde San José del Valle, si deseas llegar hasta allí y conducir algunas decenas de kilómetros, que estoy seguro que se te harán muy cortos debido a la belleza del paisaje. También puedes llegar desde Ubrique a través del Parque Natural de la Sierra de Grazalema.

Si llegas desde San José del Valle, por el camino podrás divisar a lo lejos otro embalse, este mucho mas grande que el primero. Se trata del embalse de Guadalcacín, con una capacidad muchísimo mayor que el primero.

Leer más...
Radioaficionados
Protección contra inversiones de polaridad

Una de las averías más comunes que nos podemos encontrar en las emisoras de radioaficionado es la inversión de polaridad. Dicha avería se produce al conectar el equipo inadvertidamente a la alimentación con las conexiones al revés, el cable de la entrada positiva (rojo) al electrodo negativo de la batería y el cable de la entrada negativa (negro) al electrodo positivo. Hay radioaficionados que, a pesar de las advertencias por parte del servicio técnico y para ahorrarse unos euros, conectan la emisora a una sola de las baterías (12V) de un vehículo dotado de dos unidades en serie (24V), en vez de utilizar la solución más apropiada que es un reductor de tensión de 24 a 12 voltios. Esto es una fuente constante de problemas tanto para la emisora como para las propias baterias del vehículo y puede propiciar una inversión de polaridad cuando alguien manipula dichas baterias sin desconectar previamente la emisora.

En este artículo vamos a estudiar los sistemas de protección contra inversiones de polaridad de que disponen tanto las emisoras de radioaficionado como muchos otros aparatos electrónicos, entre ellos los ordenadores portátiles por ejemplo, para evitar que el equipo en cuestión resulte dañado (o por lo menos reducir en lo posible el daño) ante un percance de este tipo, y su reparación práctica tomando como ejemplo una conocida emisora de radioaficionado averiada por esta causa. ¿Te interesa?.

Leer más...
Miscelanea
Monitor para la batería del automóvil

Es curioso, pero la verdad es que a todos nos ha pasado alguna vez lo mismo. Nos levantamos una mañana de frio invierno, con prisas porque tenemos el tiempo justo para llegar al trabajo (el que tenga esa suerte). Introducimos la llave de contacto de nuestro auto y la giramos. ¡SORPRESA!... el motor de arranque no voltea o lo hace con desgana.

El coche no furula, no arranca... Entonces algunos manifestamos nuestro enfado en un idioma desconocido, emitiendo ciertos sonidos guturales como.... "Grrrrrrrrr!!!!!". Otros, algo más "expresivos", comenzamos a lanzar por nuestra boquita ciertos vocablos malsonantes, dirigidos sobre todo hacia nuestro sufrido auto que ya tiene, como poco, cinco o seis años.

Sin embargo, esta situación la podríamos haber evitado si hubieramos tenido instalado el circuito que describimos en el presente artículo. Se trata de un simpático piloto de color rojo que nos avisará antes de tiempo de que ha llegado la hora de sustituir la batería de nuestro coche.

Si has leido los dos primeros artículos de la sección "Básico" estamos seguros que no vas a tener problemas para asimilar lo que sigue. ¡Vamos allá!

Leer más...
Práctica
Soldador de temperatura controlada económico

Si es la primera vez que vas a comprarte un soldador es muy probable que te encuentres en una disyuntiva. En primer lugar, no tienes ni idea a que tipo de trabajos vas a enfrentarte y por ese motivo no te decides por una punta determinada.

Después está el tema de la potencia necesaria para el calentamiento: ¿Estarían bien 15W? ¿o quizás serían deseables 30W? ¿Prefieres a lo mejor un soldador de 60W para trabajos de cierta entidad?.

La evidente realidad es que el soldador tendría que elegirse en consonancia con el tipo de trabajo que uno vaya a realizar. Para soldaduras de componentes muy pequeños, delicados y los de tipo SMD es preferible un soldador de punta fina y de unos 15 watios. Sin embargo, si vas a usarlo para trabajos mas generales (componentes estandar, cables de conexión de cierto grosor, etc...) lo mejor sería acudir a uno de más potencia, como por ejemplo 30 watios.

Y si haces montajes que necesiten de alguna soldadura a masa localizada en la propia caja o chasis metálico del aparato que construyes, entonces lo mejor sería uno de 60 watios como poco y con un generoso tamaño de punta que permita el calentamiento de una zona amplia, de manera que esa soldadura no te salga "fria".

La pregunta que surge es: ¿no existe un soldador que permita la consecución óptima de la mayoría de los trabajos que un técnico electrónico realiza normalmente hoy dia?. La respuesta la tienes a continuación.

Leer más...
Teoría
LED intermitente con 1 transistor. Como funciona.

Probablemente ya conoces este circuito. Es posible que lo hayas visto en Youtube o en algún blog relacionado con la electrónica. Se trata de un diodo LED intermitente implementado con solo un transistor.

El invento funciona, eso si unicamente con algunos transistores, y además no puede ser más sencillo.

Solo tienes que echarle un vistazo al esquema insertado más abajo, famoso esquema, que probablemente alguien descubrió de verdadera "chamba", como decimos en mi tierra, de "chiripa" o por pura casualidad.

Sin embargo, hasta el momento no he podido localizar ningún sitio en Internet donde expliquen con detalle su funcionamiento, su "maquinaria", el "porqué" funciona.

No busques más. Aquí te lo desvelamos.

Leer más...
Noticias
RECEPTOR DE HF SIN BOBINAS

RECEPTOR DE ONDA CORTA FACIL DE CONSTRUIR

En ocasiones, las bobinas han sido para el aficionado a la radio un verdadero calvario. Unas veces porque no se especifica su valor, otras veces porque no se explica con detalle como construirlas y otras veces porque no se dispone del soporte adecuado para llevarlas a cabo.

Te podemos asegurar que con el receptor que te proponemos hoy no te pasará esto ya que no contiene en su circuitería ni una sola bobina.

Además, te resultará tan sencillo construirlo que seguro que disfrutarás desde el primer momento.

No te pierdas esta información y clica ya en LEER COMPLETO...

Leer más...

El receptor elemental (II)

El primer receptor de radio que describimos en artículos precedentes, y el más elemental, era el compuesto únicamente por el sistema antena-tierra, el detector y el auricular ¿lo recuerdas?. También te advertimos de los inconvenientes de este receptor: falta de sensibilidad y falta de selectividad. Sin embargo, este tipo de receptor podría funcionar perfectamente en aquellos lugares donde tengamos cerca una emisora de radio potente.

Efectivamente. A pesar de su poca sensibilidad, si por la proximidad de la emisora estamos en presencia de una fuerte señal de R.F., esta será suficiente para activar el auricular sin necesidad de ninguna amplificación.

La propia falta de sensibilidad de nuestro receptor se convierte en una buena noticia, ya que eso evitará que emisoras más lejanas, y por lo tanto recibidas con menor intensidad, interfieran con la que pretendemos oir ya que nuestro receptor no se enterará de que existen, y por lo tanto no se mezclarán con la primera.

Como resulta que ya conocemos los pormenores del sistema antena-tierra y también conocemos el funcionamiento del auricular, solo nos queda estudiar como funciona el detector para completar nuestro receptor más elemental. Todo a continuación.

Las frecuencias de Onda Media van aproximadamente de 500 a 1600 KHz. y la modulación, como ya hemos visto en otros artículos, se realiza variando la amplitud de la onda portadora. Las ondas electromagnéticas inducen en la antena pequeñas corrientes de R.F. moduladas en amplitud que, una vez que llegan y ejercen su función en el receptor, retornan y siguen su camino usando la toma de tierra.

Supongamos que conectamos nuestro auricular directamente al sistema antena tierra. Para redondear los cálculos, imagina que tratamos con una señal de R.F. de 1000 KHz., o lo que es lo mismo, de 1 MHz. (Megahercio). Resulta que esa es la frecuencia de la emisora que tenemos muy cerca de casa y que nos llega con una potencia bastante importante.

Con una señal de tal frecuencia llegando al auricular, variando su polaridad cada millonésima de segundo, la lámina del auricular se vería atraída y repelida un millón de veces cada segundo por el imán. Es cierto que la intensidad de las corrientes de R.F. variarían con la amplitud de la señal de B.F. transmitida, pero eso no quita que la lámina se vería atraída por el imán en un momento dado, que una millonésima de segundo después sería repelida y así sucesivamente. Resumiendo, la lámina tendría que vibrar con una frecuencia de 1 MHz. y la amplitud de estas vibraciones variaría con la señal de B.F. que acompaña a la portadora. ¿Que crees? ¿Oíríamos o no esas vibraciones?.

Tenemos que responder con un contundente, tajante y categórico NO, y esto es así por varias razones que vamos a explicar a continuación. En primer lugar, y suponiendo que la lámina de nuestro auricular llegase a vibrar, esas vibraciones de 1.000 KHz (o lo que es lo mismo de 1 MHz) no excitarían nuestro tímpano porque no caen dentro de la gama de frecuencias audibles, las cuales como máximo llegan a los 16 KHz.

En segundo lugar, es completamente imposible que la lámina vibre a esa frecuencia por muy bueno que sea nuestro auricular, ya que las vibraciones mecánicas están limitadas por la ley de la inercia, lo que nos indica que la lámina se movería menos que el ojo derecho del detective Colombo.

Aún hay una tercera razón por la que es imposible que la lámina del auricular se mueva. Efectivamente, la bobina (o bobinas) del auricular son autoinducciones que presentan una oposición muy alta al paso de la corriente alterna, siendo esta oposición mayor cuanto más elevada sea la frecuencia. Si el auricular se las tiene que ver con señales alternas de frecuencias del orden del Megahercio, como es el caso, esa oposición es tan grande que prácticamente no circula ninguna corriente por él.

Todo lo anterior nos hace ver que necesitamos algo para recuperar nuestra señal de audio, la cual la tenemos cabalgando sobre la portadora de R.F. de 1.000 KHz. A ese algo le llamamos DETECTOR o DEMODULADOR y es lo que vamos a ver a continuación.

EL DETECTOR
Supongamos que tenemos la posibilidad, mediante un dispositivo especial, de eliminar una de las mitades de la señal de R.F. antes de enviarla al auricular. Este dispositivo se intercalaría en nuestro circuito y solo permitiría el paso de la corriente en un sentido, mientras que si la corriente pretende atravesarlo en sentido contrario el dispositivo se lo impediría. Este dispositivo es el DETECTOR y lo vamos a representar con el símbolo que puedes ver en la ilustración. ¿Que ocurriría entonces?.

La verdad es que la cosa cambia de forma radical cuando introducimos el detector en nuestro circuito. Si antes teníamos una corriente alterna de R.F. que llegaba al auricular pero que no conseguía nada en absoluto, ahora tenemos algo muy distinto.

Fíjate que con la introducción del detector ahora solo llegan al auricular uno de los picos de la corriente de R.F., bien solo los positivos o bien solo los negativos, dependiendo de la posición en que pongamos el detector.

Es decir que, por ejemplo, dicha corriente solo podrá pasar desde la antena hacia la toma de tierra pero no al contrario como lo hacía antes de colocar el detector. ¿Coges el punto?.

Si suponemos la posición de dicho detector según la figura adjunta, al auricular solo le llegarán los impulsos positivos tal y como se indica en la ilustración.

Ahora la señal que le llega al auricular no es una corriente alterna, sino una corriente pulsante de R.F., eso sí, cuyas amplitudes varían en consonancia con la señal de audio que recogió el micrófono en la emisora.

Efectivamente, aunque aún no tenemos lo que en principio pretendíamos, que es nuestra querida señal de audio o B.F. (Baja Frecuencia), la corriente pulsante de R.F. que hemos obtenido gracias a la detección producirá el mismo efecto en el auricular que si le hubiéramos aplicado dicha señal de audio. No obstante, posteriormente veremos como mejorar la detección de manera que la señal de B.F. que obtendremos será idéntica a la original.

Por ahora contentémonos con saber que, aún sin tratarse de una señal de audio auténtica, sino de una serie de pulsos de R.F. cuyas amplitudes siguen a la señal de B.F. original, el efecto producido es prácticamente el mismo que si le hubiéramos aplicado al auricular la señal de B.F. directamente. El motivo lo explicamos a continuación.

Al someter al auricular a esta serie de impulsos del mismo sentido, pero cuya amplitud se va modificando en función de la señal de audio, la intensidad de la vibración de la membrana cambia dependiendo de la magnitud de dicha amplitud y consecuentemente de la amplitud del sonido original, por lo que acaba reproduciendo dicho sonido tal cual se creó ante el micrófono de la emisora.

Para que lo puedas entender mejor, imagina que la señal de R.F. no está modulada, es decir, que no contiene información de sonido alguno. En este caso su amplitud será constante por lo que, una vez detectada, la amplitud de los pulsos obtenidos también será constante, bien negativos o bien positivos dependiendo de como conectemos el detector pero todos esos impulsos serán idénticos y de amplitud constante.

Si aplicamos los impulsos anteriores al auricular su membrana se desplazará permanentemente hacia afuera o hacia adentro, dependiendo de si los impulsos son negativos o positivos, y el auricular no emitirá ningún sonido. Es como si le estuviéramos aplicando a la membrana una serie de golpes rapidísimos, con una velocidad tal que dicha membrana no tuviera apenas tiempo de retroceder cuando de nuevo recibe otro golpe exactamente igual que el anterior, y así sucesivamente, por lo que permanentemente queda desplazada hacia adentro debido a la rapidez de los golpes recibidos. Tienes aquí una simulación gráfica de lo que te acabo de explicar.

Sin embargo, la cosa cambia cuando la señal detectada está modulada en amplitud. En este caso la curvatura de la lámina del auricular irá cambiando en consonancia con la amplitud de los impulsos. Es como si los golpes que le estuviesemos aplicando a la membrana no tuvieran la misma fuerza unos que otros y por lo tanto la curvatura producida sería mayor o menor en función de la fuerza de dichos golpes. Los impulsos eléctricos que recibe el auricular, aunque son todos del mismo sentido no tienen la misma amplitud o intensidad, por lo que la curvatura que producen en su lámina no es constante como en el caso anterior de la portadora no modulada, sino que varía en función de la intensidad de dichos impulsos, reproduciendo el sonido original que se creó ante el micrófono de la emisora. También en este caso tienes aquí una simulación gráfica de lo que te queremos decir.

Ahora nuestro auricular no intenta reproducir una corriente alterna de alta frecuencia, ya que la hemos despojado de sus picos negativos. Ahora lo que reproduce, mediante los sucesivos impulsos de la onda detectada, es la señal de audio de B.F. que modula a la de R.F. y que corresponde al sonido original.

A este respecto hemos de decir sobre estos impulsos que no podemos llamarlos impulsos de "corriente alterna" como en el caso de la señal de R.F. completa sin detectar, ya que solo tienen polaridad positiva y las corrientes que producen solo circulan en un sentido. En realidad, la señal alterna de R.F. la hemos convertido con la detección en una señal que produce "corriente continua" de forma interrumpida y a intervalos regulares. Es el mismo tipo de corriente que, ilustrativamente, produciría una batería conectada a un interruptor que pudiéramos abrir y cerrar a una velocidad vertiginosa. Este tipo de corrientes reciben el nombre de "CORRIENTES CONTINUAS PULSANTES".

Volviendo al circuito de nuestro receptor, al aplicarle al auricular una CORRIENTE CONTINUA y no una corriente alterna, la autoinducción que presenta su bobina es bastante menor que la que encontramos al aplicarle la señal alterna de R.F. sin detectar. Por esta razón, una vez la señal ha sido detectada, las corrientes que produce en el circuito si pueden pasar a través del auricular y hacer su efecto.

Hasta ahora hemos hablado del detector como si se tratara de un único y exclusivo componente electrónico. Dicho componente electrónico recibe el nombre de "DIODO". Sin embargo hemos de puntualizar que, aunque en la actualidad es así, a lo largo de la historia de la radio se han utilizado infinidad de medios para lograr la detección, y no todos a base precisamente de diodos. Uno de los primeros detectores que se usaron, a modo de diodo, fué el llamado "DETECTOR DE GALENA", del que hablaremos en el próximo artículo.

De todas formas, y como hemos dicho anteriormente, el diodo es el detector de AM más utilizado universalmente, con muchísima diferencia, por lo que nos extenderemos más en él que en otros tipos de detectores. Pero eso será a partir del próximo artículo ¿Te parece bien?. Pues... ¡¡hasta entonces!!.

 
C O M E N T A R I O S   
El receptor elemental II

#1 Juan Carlos López Duque » 30-05-2016 23:32

Han hecho ustedes un trabajo encomiable. Sus esfuerzos por clarificar principios físicos muy complejos es verdaderamente envidiable.
Reciba mi más sincera enhorabuena... Y sigo leyendo.

El JuanC++

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.