Acceso



Registro de usuarios
Contáctenos
Teoría
Cálculos con resistencias I

En un artículo anterior ya hemos hablado sobre la ley de Ohm y hemos desarrollado las tres fórmulas a las que podemos acudir para solucionar un determinado problema. Sin embargo, eso no basta en la mayoría de las situaciones, siendo necesario que adquiramos la soltura necesaria para afrontar con éxito los casos reales a los que nos veremos obligados a hacer frente.

Para adquirir esa soltura, no nos queda mas remedio que practicar, practicar y practicar. ¿Recuerdas aquella frase que mencionamos en uno de nuestros artículos?; "Teoría sin práctica es parálisis y práctica sin teoría es ceguera". Para que no nos quedemos "paralizados", tenemos que habituarnos a ensayar con la ley de Ohm a poco que tengamos oportunidad.

Bién es verdad que a veces la práctica necesaria para el ejercicio de alguna disciplina es complicada de conseguir, sobre todo en los tiempos difíciles que nos ha tocado vivir, en los que las dificultades a veces nos agobian y no nos queda apenas tiempo libre.

Para intentar paliar esto en lo posible, este artículo irá acompañado de un videotutorial que los usuarios premium podrán bajar de la zona de descargas. Esperamos que resulte de vuestro agrado. ¡Comencemos a calcular!.

Leer más...
Otros Temas Interesantes
Noticias
Curso de ELECTRÓNICA BÁSICA 02

PUBLICADO EL CAPÍTULO 2

Publicado el segundo capítulo de nuestro CURSO DE ELECTRÓNICA BÁSICA. Puedes visualizarlo en este mismo artículo.

Leer más...
Radioaficionados
Preamplificador ecualizado para emisoras

Tal y como comentamos en los artículos dedicados al "Puente de Wien", presentamos en este artículo una aplicación poco común de dicho circuito. Aunque no exactamente trabajando en configuración puente, vamos a usar sus redes RC características para construirnos un pequeño preamplificador ecualizado para usarlo con nuestro equipo de radio.

Gracias a este circuito conseguiremos una modulación perfecta, resaltando los tonos de nuestra voz que más nos convengan, de manera que podremos ofrecer a aquellos que nos oigan una nitidez y transparencia excelentes.

Si tienes el tono de voz demasiado grave podrás disminuir el nivel de las frecuencias bajas y subir las más agudas de manera que se te oiga con más claridad.

Y viceversa, si lo que tienes es un tono de voz muy "chillón" podrás resaltar los sonidos más graves y bajar los tonos más agudos. El resultado puede ser espectacular. ¿Te interesa este tema?. Clica en "Leer completo...".

Leer más...
Miscelanea
Sencillo VU-Meter a diodos LED

Lejos quedan aquellos tiempos en los que todos los medidores, y al decir todos me refiero a TODOS, estaban construidos mediante un galvanómetro y la lectura se realizaba con una aguja que parecía deslizarse al recorrer una escala graduada.

A decir verdad, para aquellos que en cierta manera somos de "la vieja escuela", los referidos medidores, midieran lo que midieran, tenían un encanto muy especial y podría decirse que sentimos "morriña" cuando los recordamos, como diría un gallego al estar lejos de su tierra y escuchar el sonido de una gaita.

Pero llegaron los diodos LED y se hizo la luz. Desde entonces, son muchos y muy variados los VU-Meters, vúmetros o medidores de unidades "VU" (del inglés Volume Unit) que se han desarrollado incorporando este componente electrónico, sobre todo usando la tecnología de la integración.

Pero en este artículo no vamos a publicar la información técnica para construir uno de estos instrumentos con los clásicos circuitos integrados UAA170 o UAA180 ni con cualquier otro. Tampoco vamos a enseñarte a conectar esas "barritas" LED con diferentes diseños. ¡Con ellas practicamente lo tienes todo hecho!.

En este artículo vamos a enseñarte como construir un VU-Meter LED con componentes discretos. ¡Dale ya al "Leer completo..." para saber más!.

Leer más...
Práctica
El electroscopio

Llegó la hora de realizar nuestra primera práctica electrónica. Una vez que hemos estudiado la electricidad estática estaría bien ver los efectos que produce esta mediante un artilugio construido por nosotros mismos.

En este artículo vamos a explicar que es un electroscopio y además vamos a fabricar uno con materiales muy comunes a practicamente costo cero. Siendo un instrumento sumamente fácil y económico de construir, con él podremos ver los efectos de la electricidad estática estudiados en el artículo anterior.

William Gilbert (1544-1603), médico y físico inglés, fué la persona que construyó por primera vez un electroscopio para realizar experimentos con cargas electrostáticas. Acérrimo defensor de la teoría copernicana, sus mayores aportaciones a la ciencia tratan sobre electricidad y magnetismo. Al mostrar que el hierro a altas temperaturas (al rojo) no presenta alteraciones magnéticas, se adelantó a los modernos descubrimientos de Curie. Aunque actualmente el instrumento inventado por Gilbert no es más que una pieza de museo, existiendo herramientas muchísimo mas modernas para estos menesteres, resulta muy instructiva su construcción. Prepárate pués para empezar a experimentar con la electricidad estática.

Leer más...
Teoría
Las válvulas de vacío VI

Bienvenidos al sexto artículo de esta serie dedicada a las válvulas de vacío. Vamos a ver a continuación un receptor que hizo furor hace años, cuando las válvulas termoiónicas estaban en su apogeo y los radioaficionados eran verdaderos "manitas", ávidos de experimentación y deseosos de construir con sus propias manos un receptor de radio.

Describiremos el circuito de un receptor que mejora sustancialmente las características del que estudiamos en el artículo anterior. Utilizaba una técnica llamada "detección por rejilla" y, a pesar de que usa prácticamente los mismos componentes que el "detector por placa" visto en el artículo precedente, el aumento de sensibilidad es considerable por lo que fué bastante usado en su época.

En el siguiente artículo estudiaremos el llamado "detector a reacción" con el que, solo a costa de cierta inestabilidad asumible y perfectamente controlable por el usuario, se obtenía una sensibilidad aún superior a la del detector por rejilla. Pero eso será después de conocer el funcionamiento del primero.

Clic en el botón "Leer completo..." para continuar.

Leer más...
Noticias
Versión 10.5.0.310 de Coil32

Presentamos la nueva y última versión a fecha de hoy (10.5.0.310) del software de cálculo de bobinas y circuitos resonantes LC "Coil32".

Como en la versión anterior, la interface está debidamente traducida al castellano por nosotros, ya que la traducción que incorpora la versión original está plagada de errores e inexactitudes.

En esta versión se ha incorporado entre otras cosas el cálculo de bobinas multicapas, las cuales podrán o no incluir capas intermedias aislantes.

Leer más...

El receptor elemental (VII)

En el artículo anterior hemos visto en profundidad como funciona "internamente" un circuito resonante paralelo. Sin embargo, la realidad es que el conocer su funcionamiento no nos ha aclarado mucho con respecto a la faceta de selector de frecuencias que debe realizar en nuestro receptor elemental. En el artículo que empezamos ahora vamos a conocer, por medio de un sencillo experimento, que es lo que este circuito hace exactamente con las señales de radio para conseguir seleccionar una sola de ellas y desechar el resto.

Quizás te parezca que la lectura del artículo anterior no ha servido de gran cosa. Sin embargo te alegrará saber que no es así. Lo estudiado entonces va a servirte de mucho, y cuando llegue el momento en que toquemos los osciladores es muy probable que vuelvas a él para repasar los conocimientos que se exponen allí. Por ahora, solo puedo decirte que, si no lo has leído, harías bién en volver atrás y leerlo cuidadosamente, procurando entender lo que se dice y retener las ideas principales. Te puedo asegurar que te serán de mucha utilidad en el futuro, si sigues con nosotros.

Ahora, vamos a comenzar nuestro experimento. ¿Quieres pasar a verlo?... pues adelante.

Para empezar, vamos a necesitar un generador de corriente alterna, que podemos bautizar con el nombre de "oscilador", al que podamos modificarle la frecuencia dentro de unos márgenes determinados. También vamos a necesitar la ayuda de un amperímetro de alterna mediante el cual determinaremos la magnitud de la intensidad de corriente que circula en un momento dado por nuestro circuito.

Si ya tenemos el instrumental adecuado vamos a conectarlo de la manera que te indicamos en la siguiente ilustración. Fíjate que tanto el generador de corriente alterna, al que a partir de ahora llamaremos oscilador de frecuencia variable, como el amperímetro están conectados "en serie" con el circuito resonante paralelo.

La d.d.p. en la salida del oscilador permanece constante aunque variemos su frecuencia, razón por la cual también permanece constante la intensidad de corriente a través del circuito para diferentes valores de la frecuencia. Pero comencemos a modificar dicha frecuencia a ver que ocurre.

Supongamos que pretendemos recorrer de una punta a otra la banda de Ondas Medias. Para ello comenzaremos en 500 KHz e iremos subiendo dicha frecuencia progresivamente hasta llegar a los 1600 KHz. Si con cada variación de la frecuencia miramos la intensidad de corriente que marca el amperímetro, comprobaremos que hasta llegar casi a los 700 KHz la corriente se ha mantenido constante. Sin embargo, si continuamos subiendo la frecuencia del oscilador, la intensidad de corriente en el circuito disminuye rápida y progresivamente hasta que cae a un valor casi nulo, prácticamente cero, cosa que ocurre al llegar justo a los 800 KHz.

Si seguimos elevando la frecuencia del oscilador, el amperímetro parece despertar de su letargo y comienza de nuevo a marcar una intensidad de corriente que va ascendiendo de valor conforme nos alejamos de la frecuencia de 800 KHz. El valor de esta corriente se estabiliza de nuevo a partir de algo más de 900 KHz y continúa teniendo ese valor hasta llegar a los 1600 KHz.

La intensidad de corriente marcada por el amperímetro de nuevo permanece constante a partir de una frecuencia algo superior a los 900KHz. En la ilustración podemos apreciar gráficamente lo que acabamos de explicar.

Observa como las frecuencias cercanas a 800 KHz, tanto las anteriores como las posteriores, también están influenciadas por este efecto, tanto más cuanto más cercanas están de aquella.

A continuación, y teniendo presente el experimento anterior, vamos a cambiar una de las variables para visualizar los resultados con un enfoque distinto. La idea ahora es representar en un gráfico la resistencia que opone el circuito LC en función de la frecuencia del oscilador, en vez de usar la intensidad de corriente como parámetro como hemos hecho en la imagen anterior.

El proceso que realizamos con el oscilador es idéntico al que hemos hecho antes, comenzando con una frecuencia de 500 KHz y recorriendo la banda de Ondas Medias hacia arriba hasta llegar a los 1600 KHz.

Vemos con claridad como la resistencia del circuito resonante paralelo LC aumenta extraordinariamente cuando la frecuencia del oscilador ronda los 800 KHz.

Examinando lo ocurrido y analizando los resultados desde este último punto de vista podemos decir que un circuito resonante paralelo se comporta como una resistencia cuyo valor es constante y relativamente bajo para todas las frecuencias excepto para una, que llamaremos fo, a la que el circuito resonante presenta una resistencia extraordinariamente alta. A esta frecuencia (fo) se le conoce como "frecuencia de resonancia" del circuito LC.

Observa como la resistencia máxima presentada por el circuito corresponde a la frecuencia de resonancia (fo). En este caso concreto nuestro circuito LC tiene una "frecuencia de resonancia" de 800 KHz. A esta curva se le conoce como "curva de resonancia".

La frecuencia de resonancia depende de dos factores: por un lado del valor de la autoinducción de la bobina y por el otro de la capacidad del condensador. Si conociéramos ambos datos podríamos calcular fo hallando el inverso del resultado del producto de la raiz cuadrada de la capacidad del condensador en faradios por la autoinducción de la bobina en henrios multiplicado por el doble de π (pi). Seguro que lo verás mas claro con la ayuda de la siguiente fórmula:

En la expresión anterior fo representa la frecuencia de resonancia, L es la autoinducción de la bobina en henrios y C es la capacidad del condensador en faradios. Para simplificarla un poco, podemos poner directamente el resultado de la multiplicación de π (pi) por 2, lo que nos daría 6,28 aproximadamente. Por lo tanto, la fórmula anterior quedaría de la siguiente manera:

Vemos pues, que gracias al circuito resonante paralelo, podemos llegar a tener un medio para seleccionar nuestra emisora preferida en el receptor elemental (ya veremos como lo conectamos). Claro que, a todos nos gusta poder cambiar de vez en cuando de sintonía. La pregunta que se impone ahora es... ¿Como modificamos la frecuencia de resonancia del circuito LC para poder sintonizar diferentes emisoras?.

MODIFICAR LA FRECUENCIA DE RESONANCIA
Antes lo hemos dicho: La frecuencia de resonancia de un circuito LC depende del valor de la capacidad del condensador y de la autoinducción de la bobina. Haciendo que el valor de uno de estos componentes sea variable, lograremos que la frecuencia de resonancia del circuito LC también sea variable.

Normalmente en la mayoría de los receptores analógicos comerciales actuales es el condensador el que realiza este trabajo, por lo que se le denomina "condensador variable". En algunos modelos de receptores, sobre todo en los más antiguos, se usaban bobinas con nucleo móvil para conseguir modificar su autoinducción y por lo tanto la frecuencia de resonancia del circuito LC al que pertenecía. Sin embargo, y como hemos dicho anteriormente, actualmente es el condensador el que se usa casi universalmente para ello.

El condensador variable está formado por dos grupos de placas metálicas. Uno de los grupos es fijo y el otro grupo tiene la facultad de poder girar por medio de un eje. Las placas de un mismo grupo están conectadas eléctricamente entre sí, de forma que se pueda obtener una capacidad máxima superior a la que se obtendría por medio de solo una placa en cada grupo. A más placas más capacidad cuando todas, móviles y fijas, están enfrentadas unas con las otras.

El efecto es el mismo que si el condensador tuviera solo dos placas mucho mas grandes de lo que son en realidad, de manera que sus respectivas capacidades se suman (esto lo veremos más detalladamente cuando toquemos los circuitos serie y paralelo).

Cuando las placas del grupo móvil no están enfrentadas a las del grupo fijo, o sea cuando están afuera, se obtiene la capacidad mínima posible para el condensador, y recíprocamente cuando las placas están enfrentadas unas con otras, o sea dentro, se obtiene la capacidad máxima.

El dieléctrico empleado en los condensadores variables de sintonía es normalmente aire o papel, aunque también existen condensadores variables de mica y cerámicos.

Fíjate atentamente en la foto. Se trata de un condensador variable con dieléctrico de aire. Observa como las placas móviles, al girar, salen o entran de entre las placas fijas dependiendo si el giro es a la izquierda o a la derecha. Es como cuando cruzamos los dedos de ambas manos, pero sin que lleguen a tocarse nunca los dedos de la mano izquierda con los de la mano derecha. ¿Lo entiendes?.

Por fín tenemos nuestro circuito resonante paralelo, cuya frecuencia de resonancia podemos modificarla a voluntad, listo para montarlo en nuestro receptor elemental. Las preguntas que surgen son... ¿Como va montado? ¿Como funciona exactamente?. De eso tratamos en nuestro próximo artículo. ¡¡No te lo pierdas!!.

 
C O M E N T A R I O S   
Impactado.!

#3 Esteban Ali » 07-03-2018 05:54

Hace tiempo buscaba la manera de encontrar la frecuencia de resonancia de manera alternativa.. la verdad que este articulo me sirvio muchisimo.! voy a compartir este link..

impactado.!

#2 Esteban Ali » 07-03-2018 05:51

la verdad no se por que no veo comentarios en algo tan productivo como esta explicacion.! llevo un monton de tiempo buscando la manera de encontrar alternativamente la frecuencia de resonancia.. agradezco el aporte.! :oks: :plup:

Felicitaciones

#1 carlos sanchez » 20-03-2013 23:28

Es definitivo que sus articulos son muy valiosos e ilustrativos por lo cual los felicito e insto a continuar. Aprovecho para hacer una consulta sobre el condensador o capacitor variable y es esta. Si las variaciones en capacitancia al oscilar el rotor permiten selecionar las frecuencias, como se conecta dicho capacitor a la siguiente seccion, Es decir, si rotor y estator deben estar estrictamente aislados y cuales serian los puntos mas recomendados para aprovechar las variaciones de capacitancia??? Agradezco algun comentario en respuesta. Hasta pronto

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.