Acceso



Registro de usuarios
Contáctenos
Teoría
El generador - Medir la electricidad

Si recordamos el símil hidráulico que expusimos en artículos anteriores, rápidamente podemos deducir que en cuanto el nivel del agua del depósito "N" se iguale a la del depósito "P" dejará de haber una corriente a través del tubo que une los dos depósitos. Es decir, la corriente a través del tubo se mantendrá mientras se mantenga la "diferencia de nivel" entre el depósito "N" y el depósito "P", que representa lo que hemos quedado en llamar "d.d.p." en nuestro circuito eléctrico.

Para mantener esta diferencia de niveles de agua y hacer que la corriente continúe fluyendo a través del tubo debemos hacer algo. De lo contrario la corriente de fluido cesará. Habrá sido una corriente momentánea, algo similar a una descarga rápida entre dos cuerpos cargados eléctricamente. ¿Quieres saber como conseguirlo? Lee este artículo.

Leer más...
Otros Temas Interesantes
Noticias
¡Muchas gracias Marcial!

A veces ocurren cosas en la vida que podemos calificar de maravillosas, y eso es lo que precisa y personalmente me ha sucedido hoy mismo. Permíteme que te lo cuente, por favor.

Esta mañana he tenido la oportunidad de conocer a una gran persona. Se llama Marcial y vive en Cádiz capital.

Puedo asegurar que jamás nos habíamos visto antes y que nunca me había comunicado con él por ningún medio hablado o escrito antes de ayer, dia en el que intercambiamos algunos correos electrónicos y mantuvimos una conversación telefónica.

Marcial, haciendo gala de una espléndida generosidad, nos ha donado una ingente cantidad de revistas técnicas de electrónica. Al calificar de "ingente" la mencionada cantidad de información escrita no me estoy refiriendo a diez o quince revistas, ni a veinte, ni a treinta... Han sido más, muchísimas más. ¿Quieres saber cuantas?.

Leer más...
Radioaficionados
Regulador PWR para SuperStar 3900

Existen emisoras que marcan la diferencia, que dejan huella, que nunca se olvidan. Una de éstas es la mítica Superstar en sus diferentes versiones. Tomando como base el modelo 3900 vamos ha desarrollar en este artículo la información necesaria para colocarle un regulador de potencia de salida de radiofrecuencia (RF) para AM y FM.

En la web existe mucha información sobre esta emisora, incluso hemos visto algún que otro artículo sobre el tema que nos ocupa. Sin embargo la información que hemos encontrado en la red no está detallada y además no es muy precisa ni todo lo exacta que requiere algo así. Una persona sin mucha experiencia podría encontrarse con un serio disgusto si la llevara a cabo debido a las lagunas que acompañan estas informaciones.

Por esta razón hemos decidido hacer un artículo repleto de ilustraciones y muy detallado, con la idea de que su puesta en práctica les resulte fácil a aquellos que no tienen la experiencia suficiente en trabajos de este tipo y que puedan llevarla a cabo sin ningún tipo de problema. Con solo un soldador, algo de estaño y un par de cablecillos podrás incorporar a tu Superstar 3900 un práctico regulador para controlar en todo momento su potencia de salida en AM o FM, lo cual es muy conveniente (yo diria que absolutamente necesario) en caso de usar un amplificador de salida de RF. Una vez instalado deberás tener en cuenta la legislación vigente en esta materia y no sobrepasar la potencia máxima permitida, que en España es de 4 Watios tanto para AM como para FM.

Leer más...
Miscelanea
Detector de OVNIS (UFO Detector)

A veces nos encontramos con circuitos que nos sorprenden por su simplicidad y por la efectividad con que realizan su trabajo. En este dia hemos querido publicar uno de estos montajes tan atractivos para muchos entusiastas de la electrónica y, al mismo tiempo, aficionados a la llamada "UFOLOGIA".

Presentamos en esta ocasión los detalles técnicos de un equipo de muy fácil construcción con el que podremos detectar en las inmediaciones la existencia de OVNIs (Objetos Volantes No Identificados), también llamados en inglés UFOs (Unidentified Flying Object).

Se ha demostrado que dichos objetos producen picos de energia electromagnética que pueden ser recibidos por circuitos amplificadores con entrada de alta impedancia. Es precisamente este tipo de circuito el que te proponemos como miscelánea y despedida del año 2015.

Los materiales usados para llevar a cabo este montaje son baratos y muy corrientes. Por lo tanto, te serán facilmente localizables en el mercado. ¿Te atreverás a detectar la presencia de OVNIS con él?.

Leer más...
Práctica
La soldadura

"Teoría sin práctica es parálisis y práctica sin teoría es ceguera". Con la primera parte de esta frase, cuya autoría desconocemos, podemos resaltar la importancia de que cualquier cosa que estudiemos siempre vaya acompañada de ejercicios prácticos. De nada en absoluto nos sirve estudiar muy a fondo cualquier rama del saber si luego somos incapaces de poner en práctica lo aprendido. ¿Cuantos inventos han podido no ver la luz si su inventor no hubiera llevado a la práctica la idea, basada en su conocimiento teórico, que tuvo en un momento determinado?.

La segunda parte de la frase es tan cierta como la primera y, por desgracia, se da con bastante más frecuencia que su compañera en la vida real. Cuantas veces hemos contratado a un "profesional" para que nos haga un trabajo y al final, cuando ha terminado, vemos "la chapuza" que nos entrega. ¡Cuanta razón tenía Leonardo Da Vinci cuando expresó lo siguiente!: "Los que se enamoran de la práctica sin la teoría son como pilotos sin timón ni brújula que nunca podrán saber a donde van". Esto nos confirma que "práctica sin teoría es ceguera".

Pues bién, todo ello trasladado a la radio y la electrónica tiene una importancia decisiva. Por lo tanto, vamos a practicar un poco con algo esencial para construir nuestros circuitos de forma apropiada. ¿Que tal si aprendemos a soldar correctamente?. ¿Te gusta la idea?

Leer más...
Teoría
El Alfa y la Beta del transistor BJT

¿Que aficionado a la electrónica no ha oido hablar alguna vez de la "Beta" (β) de un transistor?. Para algunos quizás el término "hFE" les será más conocido que el anteriormente mencionado, aunque básicamente son la misma cosa.

Otro parámetro del transistor posiblemente menos conocido y del que suele hablarse más escasamente, aunque ambos están intimamente relacionados como vamos a ver en la última sección de este artículo, es el llamado "Alfa" (α), también denominado "factor de mérito".

Sin embargo, oir hablar a menudo de algo y saber exactamente de que se trata son dos asuntos muy diferentes ¿no te parece?.

Sabemos que en la red pueden encontrarse miles de páginas que hablan sobre este tema. No obstante, en muchas de ellas solo pueden leerse textos "copy & paste" procedentes de libros técnicos, la mayoría de veces áridos, pesados de leer y difíciles de asimilar. En otras, la información no está completa o contiene errores que desorientan y confunden al lector.

Con el presente artículo queremos hacer llegar esta información a nuestros visitantes por una parte de forma amena y sin complicaciones, y por otra sumergiéndonos matematicamente en la relación que une a los dos parámetros mencionados para aquellos que les guste profundizar en estos temas ¿Te subes a este carro?.

Leer más...
Noticias
4 PREAMPLIFICADORES CON 1 TRANSISTOR

Aprende a crear tu propio preamplificador

Las etapas preamplificadoras transistorizadas disfrutan de mucha popularidad entre los aficionados a la electrónica.

Por este motivo, nos llamó la atención el artículo publicado en una conocida revista italiana, el cual describe cuatro preamplificadores distintos usando un solo transistor.

Clica en LEER COMPLETO... y entérate de los detalles.

Leer más...

El receptor elemental (VII)

En el artículo anterior hemos visto en profundidad como funciona "internamente" un circuito resonante paralelo. Sin embargo, la realidad es que el conocer su funcionamiento no nos ha aclarado mucho con respecto a la faceta de selector de frecuencias que debe realizar en nuestro receptor elemental. En el artículo que empezamos ahora vamos a conocer, por medio de un sencillo experimento, que es lo que este circuito hace exactamente con las señales de radio para conseguir seleccionar una sola de ellas y desechar el resto.

Quizás te parezca que la lectura del artículo anterior no ha servido de gran cosa. Sin embargo te alegrará saber que no es así. Lo estudiado entonces va a servirte de mucho, y cuando llegue el momento en que toquemos los osciladores es muy probable que vuelvas a él para repasar los conocimientos que se exponen allí. Por ahora, solo puedo decirte que, si no lo has leído, harías bién en volver atrás y leerlo cuidadosamente, procurando entender lo que se dice y retener las ideas principales. Te puedo asegurar que te serán de mucha utilidad en el futuro, si sigues con nosotros.

Ahora, vamos a comenzar nuestro experimento. ¿Quieres pasar a verlo?... pues adelante.

Para empezar, vamos a necesitar un generador de corriente alterna, que podemos bautizar con el nombre de "oscilador", al que podamos modificarle la frecuencia dentro de unos márgenes determinados. También vamos a necesitar la ayuda de un amperímetro de alterna mediante el cual determinaremos la magnitud de la intensidad de corriente que circula en un momento dado por nuestro circuito.

Si ya tenemos el instrumental adecuado vamos a conectarlo de la manera que te indicamos en la siguiente ilustración. Fíjate que tanto el generador de corriente alterna, al que a partir de ahora llamaremos oscilador de frecuencia variable, como el amperímetro están conectados "en serie" con el circuito resonante paralelo.

La d.d.p. en la salida del oscilador permanece constante aunque variemos su frecuencia, razón por la cual también permanece constante la intensidad de corriente a través del circuito para diferentes valores de la frecuencia. Pero comencemos a modificar dicha frecuencia a ver que ocurre.

Supongamos que pretendemos recorrer de una punta a otra la banda de Ondas Medias. Para ello comenzaremos en 500 KHz e iremos subiendo dicha frecuencia progresivamente hasta llegar a los 1600 KHz. Si con cada variación de la frecuencia miramos la intensidad de corriente que marca el amperímetro, comprobaremos que hasta llegar casi a los 700 KHz la corriente se ha mantenido constante. Sin embargo, si continuamos subiendo la frecuencia del oscilador, la intensidad de corriente en el circuito disminuye rápida y progresivamente hasta que cae a un valor casi nulo, prácticamente cero, cosa que ocurre al llegar justo a los 800 KHz.

Si seguimos elevando la frecuencia del oscilador, el amperímetro parece despertar de su letargo y comienza de nuevo a marcar una intensidad de corriente que va ascendiendo de valor conforme nos alejamos de la frecuencia de 800 KHz. El valor de esta corriente se estabiliza de nuevo a partir de algo más de 900 KHz y continúa teniendo ese valor hasta llegar a los 1600 KHz.

La intensidad de corriente marcada por el amperímetro de nuevo permanece constante a partir de una frecuencia algo superior a los 900KHz. En la ilustración podemos apreciar gráficamente lo que acabamos de explicar.

Observa como las frecuencias cercanas a 800 KHz, tanto las anteriores como las posteriores, también están influenciadas por este efecto, tanto más cuanto más cercanas están de aquella.

A continuación, y teniendo presente el experimento anterior, vamos a cambiar una de las variables para visualizar los resultados con un enfoque distinto. La idea ahora es representar en un gráfico la resistencia que opone el circuito LC en función de la frecuencia del oscilador, en vez de usar la intensidad de corriente como parámetro como hemos hecho en la imagen anterior.

El proceso que realizamos con el oscilador es idéntico al que hemos hecho antes, comenzando con una frecuencia de 500 KHz y recorriendo la banda de Ondas Medias hacia arriba hasta llegar a los 1600 KHz.

Vemos con claridad como la resistencia del circuito resonante paralelo LC aumenta extraordinariamente cuando la frecuencia del oscilador ronda los 800 KHz.

Examinando lo ocurrido y analizando los resultados desde este último punto de vista podemos decir que un circuito resonante paralelo se comporta como una resistencia cuyo valor es constante y relativamente bajo para todas las frecuencias excepto para una, que llamaremos fo, a la que el circuito resonante presenta una resistencia extraordinariamente alta. A esta frecuencia (fo) se le conoce como "frecuencia de resonancia" del circuito LC.

Observa como la resistencia máxima presentada por el circuito corresponde a la frecuencia de resonancia (fo). En este caso concreto nuestro circuito LC tiene una "frecuencia de resonancia" de 800 KHz. A esta curva se le conoce como "curva de resonancia".

La frecuencia de resonancia depende de dos factores: por un lado del valor de la autoinducción de la bobina y por el otro de la capacidad del condensador. Si conociéramos ambos datos podríamos calcular fo hallando el inverso del resultado del producto de la raiz cuadrada de la capacidad del condensador en faradios por la autoinducción de la bobina en henrios multiplicado por el doble de π (pi). Seguro que lo verás mas claro con la ayuda de la siguiente fórmula:

En la expresión anterior fo representa la frecuencia de resonancia, L es la autoinducción de la bobina en henrios y C es la capacidad del condensador en faradios. Para simplificarla un poco, podemos poner directamente el resultado de la multiplicación de π (pi) por 2, lo que nos daría 6,28 aproximadamente. Por lo tanto, la fórmula anterior quedaría de la siguiente manera:

Vemos pues, que gracias al circuito resonante paralelo, podemos llegar a tener un medio para seleccionar nuestra emisora preferida en el receptor elemental (ya veremos como lo conectamos). Claro que, a todos nos gusta poder cambiar de vez en cuando de sintonía. La pregunta que se impone ahora es... ¿Como modificamos la frecuencia de resonancia del circuito LC para poder sintonizar diferentes emisoras?.

MODIFICAR LA FRECUENCIA DE RESONANCIA
Antes lo hemos dicho: La frecuencia de resonancia de un circuito LC depende del valor de la capacidad del condensador y de la autoinducción de la bobina. Haciendo que el valor de uno de estos componentes sea variable, lograremos que la frecuencia de resonancia del circuito LC también sea variable.

Normalmente en la mayoría de los receptores analógicos comerciales actuales es el condensador el que realiza este trabajo, por lo que se le denomina "condensador variable". En algunos modelos de receptores, sobre todo en los más antiguos, se usaban bobinas con nucleo móvil para conseguir modificar su autoinducción y por lo tanto la frecuencia de resonancia del circuito LC al que pertenecía. Sin embargo, y como hemos dicho anteriormente, actualmente es el condensador el que se usa casi universalmente para ello.

El condensador variable está formado por dos grupos de placas metálicas. Uno de los grupos es fijo y el otro grupo tiene la facultad de poder girar por medio de un eje. Las placas de un mismo grupo están conectadas eléctricamente entre sí, de forma que se pueda obtener una capacidad máxima superior a la que se obtendría por medio de solo una placa en cada grupo. A más placas más capacidad cuando todas, móviles y fijas, están enfrentadas unas con las otras.

El efecto es el mismo que si el condensador tuviera solo dos placas mucho mas grandes de lo que son en realidad, de manera que sus respectivas capacidades se suman (esto lo veremos más detalladamente cuando toquemos los circuitos serie y paralelo).

Cuando las placas del grupo móvil no están enfrentadas a las del grupo fijo, o sea cuando están afuera, se obtiene la capacidad mínima posible para el condensador, y recíprocamente cuando las placas están enfrentadas unas con otras, o sea dentro, se obtiene la capacidad máxima.

El dieléctrico empleado en los condensadores variables de sintonía es normalmente aire o papel, aunque también existen condensadores variables de mica y cerámicos.

Fíjate atentamente en la foto. Se trata de un condensador variable con dieléctrico de aire. Observa como las placas móviles, al girar, salen o entran de entre las placas fijas dependiendo si el giro es a la izquierda o a la derecha. Es como cuando cruzamos los dedos de ambas manos, pero sin que lleguen a tocarse nunca los dedos de la mano izquierda con los de la mano derecha. ¿Lo entiendes?.

Por fín tenemos nuestro circuito resonante paralelo, cuya frecuencia de resonancia podemos modificarla a voluntad, listo para montarlo en nuestro receptor elemental. Las preguntas que surgen son... ¿Como va montado? ¿Como funciona exactamente?. De eso tratamos en nuestro próximo artículo. ¡¡No te lo pierdas!!.

 
C O M E N T A R I O S   
Impactado.!

#3 Esteban Ali » 07-03-2018 06:54

Hace tiempo buscaba la manera de encontrar la frecuencia de resonancia de manera alternativa.. la verdad que este articulo me sirvio muchisimo.! voy a compartir este link..

impactado.!

#2 Esteban Ali » 07-03-2018 06:51

la verdad no se por que no veo comentarios en algo tan productivo como esta explicacion.! llevo un monton de tiempo buscando la manera de encontrar alternativamente la frecuencia de resonancia.. agradezco el aporte.! :oks: :plup:

Felicitaciones

#1 carlos sanchez » 21-03-2013 00:28

Es definitivo que sus articulos son muy valiosos e ilustrativos por lo cual los felicito e insto a continuar. Aprovecho para hacer una consulta sobre el condensador o capacitor variable y es esta. Si las variaciones en capacitancia al oscilar el rotor permiten selecionar las frecuencias, como se conecta dicho capacitor a la siguiente seccion, Es decir, si rotor y estator deben estar estrictamente aislados y cuales serian los puntos mas recomendados para aprovechar las variaciones de capacitancia??? Agradezco algun comentario en respuesta. Hasta pronto

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.