Acceso



Registro de usuarios
Contáctenos
Teoría
Los condensadores I

Los condensadores son componentes muy usados en electrónica en general, pero esto se hace más cierto, sobre todo, en la especialidad de radio.

Puede decirse que para la construcción de un equipo de radio son absolutamente necesarios los condensadores. Sin ellos no hubiera sido posible el desarrollo actual de esta rama de la electrónica.

En el presente artículo, vamos a disertar más profundamente sobre los pormenores relativos a estos componentes. Además del cálculo de las configuraciones serie y paralelo, vamos a ver algunos detalles sobre su construcción y sobre los tipos de materiales que se utilizan en su fabricación.

Hablaremos además del dieléctrico, y el porqué la composición de este elemento modifica la capacidad de este componente electrónico. Todo ello en los artículos que os presentamos a partir de ahora. ¿Nos sigues?.

Leer más...
Otros Temas Interesantes
Noticias
El diodo es muy fácil... si te lo explican así

Presentamos un video en el que exponemos la teoría del diodo semiconductor.

Como siempre, hemos procurado usar un lenguaje claro y sencillo, asequible para cualquier persona con un mínimo nivel de conocimientos.

Clica en leer completo y disfrútalo.

Leer más...
Radioaficionados
Receptor a reacción para Onda Corta (III)

Comenzamos aquí el tercer y último artículo de la serie dedicada al receptor a reacción para onda corta.

Una vez que en los dos artículos anteriores hemos desarrollado la necesaria información sobre algunos pormenores y características concretas de este receptor, aplicables también a otros receptores, pasamos a continuación a describir su funcionamiento general y a exponer las especificaciones constructivas para finalizar con éxito su montaje.

Ya hemos explicado el sistema utilizado para regenerar la señal captada por la antena por medio de la realimentación positiva.

También hemos hablado sobre la importancia del circuito resonante de sintonía, de su "Q" o factor de calidad y de la necesidad de una toma intermedia en el mismo para atacar la base del transistor amplificador de RF, de manera que dicho circuito resonante no resulte amortiguado.

El cuidado de estos detalles redundará en una mayor sensibilidad y mejor selectividad de este receptor el cual, no nos cabe ninguna duda, dará muchas alegrias a todos aquellos que acometan su construcción.

En el presente artículo veremos su funcionamiento general punto por punto de manera que al final estaremos en condiciones de contestar cualquier pregunta que se nos formule sobre él. ¡Síguenos!.

Leer más...
Miscelanea
Detector de OVNIS (UFO Detector)

A veces nos encontramos con circuitos que nos sorprenden por su simplicidad y por la efectividad con que realizan su trabajo. En este dia hemos querido publicar uno de estos montajes tan atractivos para muchos entusiastas de la electrónica y, al mismo tiempo, aficionados a la llamada "UFOLOGIA".

Presentamos en esta ocasión los detalles técnicos de un equipo de muy fácil construcción con el que podremos detectar en las inmediaciones la existencia de OVNIs (Objetos Volantes No Identificados), también llamados en inglés UFOs (Unidentified Flying Object).

Se ha demostrado que dichos objetos producen picos de energia electromagnética que pueden ser recibidos por circuitos amplificadores con entrada de alta impedancia. Es precisamente este tipo de circuito el que te proponemos como miscelánea y despedida del año 2015.

Los materiales usados para llevar a cabo este montaje son baratos y muy corrientes. Por lo tanto, te serán facilmente localizables en el mercado. ¿Te atreverás a detectar la presencia de OVNIS con él?.

Leer más...
Práctica
Cálculo de circuitos con diodos LED

Casi todo el mundo sabe de que se trata cuando se habla de diodos LED, esos pequeños componentes electrónicos que tienen la facultad de iluminarse cuando son atravesados por una corriente eléctrica. Además de que algunos modelos pueden llegar a desarrollar un considerable nivel lumínico el gasto energético que ocasionan es muy pequeño, por lo que en la actualidad ya han aparecido infinidad de lámparas domésticas basadas en ellos para casi todo tipo de aplicaciones.

Sin embargo, y centrándonos en los diodos LED estándar de 3 y de 5 milímetros usados en electrónica, muchos son los que se preguntan como se conectan a una pila o a una fuente de alimentación, quizás para usarlo como testigo de funcionamiento de algún equipo, o para hacer algún trabajo manual del colegio.

Hemos oido comentarios de todo tipo al respecto. Algunos dicen que el LED se conecta a la pila sin más, ya que piensan que funcionan con un determinado voltaje, algo parecido a las lamparitas de las linternas. Otros piensan que hay que poner dos o tres diodos más en serie, porque de lo contrario pueden "fundirse". Algunos no concretan y dicen que además del diodo LED y la pila o batería, el circuito debe de incorporar algún otro componente que lo proteja. ¿Que crees tu?.

El presente artículo tratará de arrojar luz sobre este tema, el cual en muchas ocasiones no está claro en la mente de algunos.

Leer más...
Teoría
Los condensadores III

Afrontamos ahora el estudio de los condensadores en montaje paralelo. Como apuntamos en el artículo anterior, ya hemos tocado el tema del montaje de condensadores en paralelo cuando hablamos de los condensadores variables, en el séptimo artículo dedicado al receptor elemental. No obstante, si quieres conocer a fondo esta configuración de montaje, es muy conveniente que leas el artículo que sigue, en el cual se van a despejar algunas incógnitas que de seguro tienes en mente sobre ello.

¿Como se distribuye la carga individual de cada condensador en este tipo de montaje? ¿Pasará lo mismo que en el montaje serie que estudiamos en el artículo anterior, en el que la carga de cada condensador era idéntica?.

Que ocurrirá con la d.d.p. que acumula cada uno de estos componentes al estar montados con este tipo de configuración... ¿serán también diferentes en cada condensador, o por contra en este caso serán iguales?

Si quieres conocer las respuestas a estas y más preguntas, tienes ahora la oportunidad con solo seguir leyendo este artículo.

Leer más...
Noticias
The Learning basic electrical circuits

The Learning basic electrical circuits

Basic electrical circuits. Switched lights, door bells, motor with change of direction of rotation, batteries in series, resistors in series, fuse protection. Get to know them and become familiar with them in the most entertaining way.

Leer más...

La circunferencia, el círculo y el número PI (π)

CircunferenciaLa mayor parte de las personas que vivimos en paises desarrollados, quizás porque estamos acostumbrados a obtenerlo todo con suma facilidad y/o que las cosas vengan a nosotros como caídas del cielo, a menudo las damos por sentadas de manera automática.

Practicamente en ningún momento nos preguntamos porqué algo es o se produce de una determinada manera. Nos basta con saber que tal o cual cosa es como es y punto, lo aceptamos sin reservas.

Algo así nos ha ocurrido a muchos cuando asistíamos a la escuela, en épocas pasadas. ¿Recuerdas cuando aprendiste la fórmula para hallar la longitud de la circunferencia?. ¿O cuando te enseñaron la fórmula para calcular la superficie del círculo?. Todos las aceptamos sin pestañear, y pocos fuimos los que nos preguntamos de donde habia salido el famoso número PI (π). Muchos daban por sentado que aquello era así porque lo decía nuestro profesor de matemáticas y se acabó.

Pero en realidad, esas conocidas fórmulas han salido de algún sitio o, mejor dicho, han sido promulgadas por una o varias personas después de haber dedicado mucho tiempo y esfuerzo al estudio de estas figuras geométricas.

¿Te gustaría saber más sobre este tema y conocer como se han llegado a obtener las mencionadas fórmulas y como están relacionadas entre ellas?... ¡Pues clica en "Leer completo..." ya!.

La historia de la circunferencia y el número PI se remonta aproximadamente al año 2000 a.C., cuando los estudiosos del imperio Babilónico observaron que el perímetro de un círculo era aproximadamente 3 veces superior a su diámetro. Sin embargo, no fueron ellos quienes iniciaron la teoría matemática del número que se establece y evalúa mediante la mencionada relación.

Ese privilegio hemos de adjudicárselo al físico y matemático griego Arquímedes de Siracusa el cual fue capaz, a la sazón, de expresar el número PI con una aproximación más que aceptable y nunca vista hasta ese momento.

Como probablemente sabrás, el número PI (que se representa mediante la letra griega "π") se define como la razón entre la longitud de la circunferencia y su diámetro. Se trata de una simple división, como resultado de la cual siempre se obtiene el mismo número sea cual sea el tamaño que tenga la circunferencia elegida.

Formula de PI

PI es un número irracional, lo que significa que no es posible calcularlo mediante una fracción cuyo numerador y denominador sean números enteros. Tampoco es posible saber su valor exacto ya que, al ser irracional, sus decimales se extienden hacia el infinito sin posibilidad alguna de poder predecir su valor al carecer de un patrón periódico, o sea, un número o grupo de números que se repitan constantemente después de la coma.

Son muchos los genios matemáticos que han intentado calcular el valor de PI con el mayor número de decimales posible, cosa por otra parte tan fatigosa como inútil. Desde Euler hasta los Hermanos Chudnovsky, pasando por el matemático amateur William Shanks el cual dedicó gran parte de su vida a este trabajo logrando 527 decimales exactos. No obstante, para darle al numerito un uso habitual y usando el sentido común bastará con memorizar solo los primeros decimales después de la coma.

Valor de PI

 

Volviendo a la primera de nuestras fórmulas, y sustituyendo la frase "Longitud de la Circunferencia" por la letra "C" mayúscula y la palabra "Diámetro" por la letra "D" también mayúscula, podemos expresarla de la siguiente manera:

Formula de PI

Para despejar "C" tenemos que pasar "D" al miembro de la derecha. Si en el primer miembro "D" está dividiendo al pasar al segundo miembro lo hará multiplicando, por lo que la fórmula queda como sigue:

Formula de la circunferencia

Como el diámetro (D) mide justo el doble que el radio (r), la fórmula anterior queda como indicamos a continuación, forma esta reconocible por todos ya que es la que nos enseñaron en el colegio.

Formula de la circunferencia

Hasta aquí todo ha sido muy sencillo. Hemos visto de donde sale el número PI (π) y, posteriormente, el origen y la formación de la fórmula para calcular la longitud de la circunferencia. Sin embargo sigue habiendo cosas en torno a esta figura geométrica que quizás no sean tan fáciles de ver. Nos referimos al cálculo de la superficie de la parte interior de la circunferencia, o sea, la superficie del círculo.

Todos conocemos la fórmula para hallar una superficie circular pero... ¿conocemos también como se obtiene?... ¿de donde sale?... ¿Como se llega a ella?. Las respuestas en el siguiente subtema.

LA SUPERFICIE DEL CÍRCULO

Casi al mismo tiempo que nuestro profesor nos ilustraba en geometría plana, o como también se le llama "geometría euclidea", y nos indicaba la fórmula para hallar la longitud de la circunferencia, tuvimos que memorizar además la fórmula para averiguar la superficie del círculo, la cual simbolizamos con la letra "S" mayúscula. Dicha fórmula se expresa así:

Fórmula superficie del círculo

Además de las anteriores, surgen también otras preguntas. Por ejemplo... ¿existe alguna relación entre la fórmula de la circunferencia y la del area del círculo?... ¿por qué aparece el número PI en la fórmula de la superficie circular?... Y en resumidas cuentas... ¿de donde demonios sale la fórmula del area del círculo y como llegamos a ella?.

Para responder a estas preguntas recurriremos al método de las "aproximaciones geométricas". Cojamos un círculo y dividamoslo en partes iguales, como si se tratara de un pastel. Empezaremos por trocearlo en dieciseis partes, todas ellas exactamente iguales. Mira el dibujo.

Circulo con divisiones

Ahora vamos a quedarnos con solo una de estas partes para desarrollar nuestra disertación. Da igual la que escojamos ya que todas son exactamente iguales. Nosotros vamos a elegir una al azar, por ejemplo la siguiente.

Circulo con divisiones

Ahora vamos a girar el trozo de círculo que hemos escogido, colocándolo con su lado más pequeño hacia abajo. Mira la siguiente figura.

Trozo del círculo

Fijate que lo que hemos obtenido hasta ahora es "casi" un triángulo isósceles, pero solo "casi", ya que su "base" no es exactamente una linea recta, sino que es una dieciseisava parte del perímetro del círculo, o lo que es lo mismo, una dieciseisava parte de la circunferencia con curvatura incluida. Graba esto último en tu mente ya que será muy importante para entender lo que diremos en breve. Podemos apreciar la curvatura de la "base" de nuestro "defectuoso" triángulo en la siguiente imagen.

Curvatura de la base

Si la "base" del triángulo isósceles obtenido fuese completamente recta podríamos hallar su superficie mediante la conocida fórmula "base x altura / 2" y el resultado lo multiplicaríamos por 16, que son los triángulos en que hemos dividimos la figura.

Base y altura del triángulo

De esta manera obtendríamos la superficie total del círculo.

Fórmula area círculo

Pero por desgracia, si los hicieramos así los cálculos no serían exactos. Para que lo fueran tendríamos que "enderezar" las bases de todos nuestros triángulos isósceles y entonces sí que tendríamos éxíto usando la mencionada fórmula. ¿Como conseguirlo?.

¡Bueno!... más que "enderezar" las bases de los triángulos... ¿Que tal si los hacemos más pequeños?. ¿Conseguiríamos mejorar esta situación si en lugar de dividir el círculo en 16 lo dividimos en 100 triángulos?. ¿Como quedarían entonces?. Mira la siguiente figura.

Triangulo (100 partes)

Como explicamos en la propia imagen anterior, no hemos pretendido ser precisos al efectuar el fraccionamiento, con lo cual queremos aclarar que las dimensiones de esta última figura no se corresponden con la realidad y ni mucho menos son exactas. Sin embargo, esto no tiene la más mínima importancia. En este momento, lo verdaderamente interesante es que entiendas que la base del triángulo ya no es una curva o, al menos, ha perdido gran parte de su curvatura. ¡Esto es lo verdaderamente importante!.

Base con curvatura menor

Pero no solo se ha reducido la curvatura de la base. Al dividir el círculo en 100 triángulos hemos ganado algo más. Ahora, además, la altura del triángulo mide practicamente lo mismo que el radio del círculo y esto es de una importancia vital como veremos a continuación.

Mejora de la altura

En vista del incremento de perfección y exactitud que hemos conseguido al dividir el círculo en 100 triángulos... ¿Por qué no aumentamos las divisiones a un número muchísimo mayor de 100?. Así llegará un momento en que conseguiremos la precisión total de los cálculos.

La verdad es que no podemos aumentar indefinidamente el número de divisiones del círculo. Excepto algunas pocas cosas que no tienen límites (como la insistencia y el incordio de mi querida suegra), esto si que lo tiene.

Si continuamos dividiendo sin parar llegaría un momento en que los triángulos ya no serían triángulos. Sus lados se solaparían unos con otros y entonces lo perderíamos todo. El punto exacto está justo antes de llegar a ese "límite", justo antes de que los triángulos dejen de ser tales de forma que tengamos el máximo número posible de triángulos isosceles "perfectos".

Es entonces cuando nuestros cálculos serán completamente exactos. Las bases de los triángulos serán completamente rectas y sus alturas medirán lo mismo que el radio del círculo. A ese punto es donde hemos de llegar pero... ¿Como sabremos cuando hemos llegado al "límite"?. Pues lamentablemente no lo sabemos... ¡pero lo podemos imaginar!. Sigue leyendo.

EL "LÍMITE"
Efectivamente, para efectuar de manera fidedigna nuestros cálculos podemos imaginar el "límite", el cual, para obtener el resultado final, no tiene necesariamente que ser el límite correcto. Por ejemplo... supongamos que ese límite está en 1000 triángulos. La superficie de nuestro círculo sería igual a 1000 veces la superficie de uno de esos triángulos. La fórmula sería la siguiente:

Fórmula area círculo

Como resulta que en el límite la altura del triángulo mide lo mismo que el radio de nuestro círculo, lo sustituiremos en la fórmula, la cual queda así:

Fórmula area círculo

Ahora vamos a cambiar la posición que ocupan el número "1000" y el radio "r". Esto no cambia para nada el resultado de la fórmula. Simplemente lo que hacemos es presentarla de manera diferente para que el proceso pueda entenderse más facilmente.

Fórmula area círculo

¿Recuerdas que te dijimos en el subtema anterior que te grabaras algo en la mente?. Te refrescaremos la memoria. Cuando dividimos el círculo en dieciseis triángulos te comentamos que su base era una dieciseisava parte del perímetro del círculo, o sea, una dieciseisava parte de su circunferencia. Eso quiere decir que si hubiéramos multiplicado la longitud de la base de aquel triángulo por 16 hubiéramos obtenido la longitud de su circunferencia.

Volviendo ahora a nuestro círculo actual dividido en 1000 triángulos, si multiplicamos la base de uno de ellos por 1000 también obtendremos la longitud de su circunferencia ¿verdad?. Pues eso es justamente lo que expresa el numerador de la fracción de la fórmula anterior. ¡Mírala bien!.

En el numerador se multiplica la base de uno de los triángulos por 1000. Es exactamente eso... la longitud del perímetro del círculo, o sea, la longitud de su circunferencia. Por lo tanto, sustituyamos dicho numerador por la ya conocida fórmula de la longitud de la circunferencia.

Fórmula area círculo

El número 2 está presente tanto en el numerador como en el denominador de la fracción, por lo que podemos eliminarlos sin ningún problema. La fórmula entonces queda de la siguiente manera:

Fórmula area círculo

Y por último, el radio está multiplicándose a si mismo, por lo que podemos elevarlo al cuadrado y expresar la fórmula del area del círculo tal y como la conocemos habitualmente.

Fórmula FINAL del area del círculo

Aunque el proceso ha sido un poco complejo estamos seguros que ha merecido la pena. Y si todavía te queda alguna duda puedes echarle un ojo al siguiente video, el cual te ayudará a entender lo que el artículo quizás no ha conseguido.

Regístrate... ES GRATISSi no eres usuario "Premium" puedes visualizarlo en nuestro canal de Youtube. También puedes suscribirte al canal y de esta manera no te perderás ninguna de nuestras publicaciones.

Os invitamos a todos a dejar vuestros comentarios al respecto. ¡Hasta pronto amigos!. Nos vemos de nuevo aquí, en Radioelectronica.es, tu punto de encuentro.

 
C O M E N T A R I O S   
matematica

#3 Muy practico y muy facil de entender » 19-12-2018 16:45

Felicitaciones muy buen artículo

MUY BUENA

#2 JENIFER MARIA » 31-03-2018 02:42

:D :D :D :D :D :D :D :D :D MUY BUENA

RE: Relación entre la circunferencia y el círculo

#1 Edgar » 21-08-2017 00:27

Excelente artículo, gracias un abrazo.

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.