Acceso



Registro de usuarios
Contáctenos
Teoría
Las ondas (IV)

En el artículo anterior vimos la relación que existe entre la frecuencia, la velocidad y la longitud de onda de un movimiento ondulatorio determinado. Es cierto que la velocidad de un movimiento ondulatorio la podemos determinar a partir de su longitud de onda y de su frecuencia, pero no es menos cierto que dicha velocidad no depende proporcionalmente de esos parámetros. Lo que intentamos expresar es que, dentro de un determinado tipo de ondas (por ejemplo las que engloban los sonidos audibles), su velocidad no aumenta cuando aumenta su frecuencia o su longitud de onda, sino que permanece mas o menos estable, y esto es fácil de entender porque al aumentar la frecuencia disminuye su longitud de onda y viceversa, y la velocidad -recordemos- es el resultado del producto de ambos factores (V = F · λ).

Sin embargo, sabemos que existen otra clase de ondas muchísimo más rápidas que los sonidos audibles. Se trata de ondas que tienen la facultad de viajar a la velocidad de la luz, unos 300.000 kilómetros por segundo. ¿Cual es la diferencia entre estos tipos de ondas para que la velocidad sea tan dispar entre ellas? ¿Como se hace para lograr el "milagro" de que una onda sonora, que solo viaja a poco mas de 340 metros por segundo, la podamos oir en todo el globo terraqueo prácticamente al mismo tiempo? Las respuestas las tienes a continuación.

Leer más...
Otros Temas Interesantes
Noticias
AFHA - Dibujar es fácil - Tomo 3

Tomo 3 del curso Dibujar es Fácil de AFHA.

Leer más...
Radioaficionados
Receptor a reacción para Onda Corta (I)

El principio de la reacción fue ampliamente utilizado por los radioaficionados en los albores de la radio, cuando aún los transistores no habian hecho su aparición en el escenario electrónico.

Los primeros receptores a reacción con válvulas de vacío tuvieron tal aceptación que fueron los preferidos durante muchos años por aquellos que no disponían de la capacidad económica para adquirir un equipo comercial, o bien no tenían los conocimientos técnicos necesarios para la construcción y ajuste de un receptor superheterodino, bastante más complejo de llevar a la práctica y de poner a punto.

Efectivamente, la construcción de un receptor regenerativo, como también suele llamársele, no es nada dificultosa y, por si fuera poco, prácticamente no requiere de ningún ajuste complicado. Además, y para seguir añadiéndole ventajas, los resultados que con él pueden obtenerse casi nunca defraudan. Con solo unos pocos componentes su sensibilidad puede llegar a ser extraordinaria, acercándose mucho a los receptores más sofisticados.

Y para seguir contándote ventajas te diremos que ahora es más fácil que nunca construir uno de estos equipos, ya que afortunadamente podemos usar transistores modernos en lugar de válvulas termoiónicas, sin necesidad de acudir a las altas tensiones de alimentación necesarias para estas últimas. Con solo una pila y algunos componentes más podremos disfrutar de nuestro receptor de Onda Corta en un plis-plas. ¿Te apuntas?.

Leer más...
Miscelanea
Luneta térmica (antivaho) como antena AM-FM

Es probable que alguna vez te haya pasado lo que a mi.

Se activó la alarma del radio-reloj a las 8:00 de la mañana en punto. Todavía casi dormido me incorporé y corrí las cortinas oyendo las noticias en mi emisora favorita. Unos espléndidos rayos de sol penetraron de golpe en mi habitación y acabaron con la oscuridad que hasta entonces había en ella.

Acto seguido procedí al correspondiente aseo matutino para, justo después, sentarme a desayunar. El café estaba exquisito y la tostada, regada con aceite de oliva virgen extra, me supo a gloria bendita.

Aquel dia me levanté contento, muy contento. Tenía muy buenas espectativas. Como soy un enamorado de la radio, me gusta escuchar las tertulias matinales en el coche de camino al trabajo, lo primero que hago al subir al vehículo es conectarla.

He de aclarar que mi coche duerme en plena calle. No soy el afortunado conductor que dispone de garaje. ¡Que raro!... No logro sintonizar ninguna emisora... ¿Que está pasando?.

Paro el coche y me apeo para comprobar la antena... ¡LA ANTENA!... ¡Coñ.!... ¡Que me han robado la antena!.

Esto me estropeó completamente el dia. El cabreo que pillé fue monumental, de campeonato. Entonces tomé una decisión.

Para que esto no me ocurriera más, a partir de entonces decidí usar la luneta térmica, también conocida por el término "antivaho", como antena para mi receptor de radio AM/FM. Si alguien tenía la intención de dejarme sin escuchar la radio tendría que llevarse la luna trasera, y ya eso le iba a resultar más complicado que robar una simple antena... ¿no crees?.

Leer más...
Práctica
Microfono inalámbrico en FM "mini"

Con solo cuatro resistencias, unos pocos condensadores, un transistor y una pila vamos a construir un micrófono inalámbrico en FM de muy reducidas dimensiones.

Somos conscientes de la gran diversidad de circuitos de este tipo que circulan por la red. Sin embargo, muchos de ellos no están suficientemente detallados y a la hora de llevarlos a la práctica son problemáticos. Otros no tienen diseñada la correspondiente placa de circuito impreso, por lo que su montaje resulta bastante fastidioso.

Con nuestro circuito hemos querido llenar el hueco que creemos que falta en este ámbito; conseguir un micrófono inalámbrico en FM sencillo, eficaz, casi miniatura, fácil de implementar y con todos los datos pormenorizados necesarios para poder llevarlo a cabo sin problemas.

La información que corresponde a este artículo se la podrán bajar en formato PDF todos nuestros visitantes, registrados y no registrados, ya que se colgará en la sección de descargas gratis. Agradeceremos mucho su colaboración si hacen comentarios con sus experiencias al respecto.

¿Os apuntais a este reto?

Leer más...
Teoría
El puente de Wien (I)

El puente de Wien es un circuito electrónico compuesto por una combinación de resistencias y condensadores en serie-paralelo. Se utiliza generalmente en instrumentos de medida y generadores de señales de baja frecuencia para laboratorios y servicios de electrónica.

Cuando se implementa como oscilador, el puente de Wien puede generar frecuencias de entre 1 Hz a 1 MHz aproximadamente y entregar una forma de onda perfectamente senoidal.

Fue usado por uno de los fundadores de la firma Hewlett-Packard (William Hewlett) en la tesis final que elaboró para conseguir el máster en la Universidad de Stanford. Posteriormente, William Hewlett junto con David Packard fundaron la empresa "Hewlett-Packard" y el primer producto que comercializaron fue el generador de señales de B.F. de precisión modelo HP-200A, basado en el circuito al que nos referimos en este artículo, el cual se hizo muy popular por su baja distorsión.

¿Por qué queremos hablar del puente de Wien?. Por una sencilla razón. En nuestro próximo artículo de la sección de "Radioaficionados" publicaremos un montaje basado en este circuito, aunque no precisamente trabajando como oscilador.

Por el momento, vamos a ver de forma básica, con la menor cantidad de matemáticas posibles, y con palabras comprensibles por todos, como funciona y que se puede hacer con este artilugio electrónico estudiando su diseño y configuración.

Leer más...
Noticias
AFHA - Curso Electrónica, Radio y TV - Tomo 8

Tomo 8 del curso de Electrónica, Radio y Televisión de AFHA.

Leer más...

La circunferencia, el círculo y el número PI (π)

CircunferenciaLa mayor parte de las personas que vivimos en paises desarrollados, quizás porque estamos acostumbrados a obtenerlo todo con suma facilidad y/o que las cosas vengan a nosotros como caídas del cielo, a menudo las damos por sentadas de manera automática.

Practicamente en ningún momento nos preguntamos porqué algo es o se produce de una determinada manera. Nos basta con saber que tal o cual cosa es como es y punto, lo aceptamos sin reservas.

Algo así nos ha ocurrido a muchos cuando asistíamos a la escuela, en épocas pasadas. ¿Recuerdas cuando aprendiste la fórmula para hallar la longitud de la circunferencia?. ¿O cuando te enseñaron la fórmula para calcular la superficie del círculo?. Todos las aceptamos sin pestañear, y pocos fuimos los que nos preguntamos de donde habia salido el famoso número PI (π). Muchos daban por sentado que aquello era así porque lo decía nuestro profesor de matemáticas y se acabó.

Pero en realidad, esas conocidas fórmulas han salido de algún sitio o, mejor dicho, han sido promulgadas por una o varias personas después de haber dedicado mucho tiempo y esfuerzo al estudio de estas figuras geométricas.

¿Te gustaría saber más sobre este tema y conocer como se han llegado a obtener las mencionadas fórmulas y como están relacionadas entre ellas?... ¡Pues clica en "Leer completo..." ya!.

La historia de la circunferencia y el número PI se remonta aproximadamente al año 2000 a.C., cuando los estudiosos del imperio Babilónico observaron que el perímetro de un círculo era aproximadamente 3 veces superior a su diámetro. Sin embargo, no fueron ellos quienes iniciaron la teoría matemática del número que se establece y evalúa mediante la mencionada relación.

Ese privilegio hemos de adjudicárselo al físico y matemático griego Arquímedes de Siracusa el cual fue capaz, a la sazón, de expresar el número PI con una aproximación más que aceptable y nunca vista hasta ese momento.

Como probablemente sabrás, el número PI (que se representa mediante la letra griega "π") se define como la razón entre la longitud de la circunferencia y su diámetro. Se trata de una simple división, como resultado de la cual siempre se obtiene el mismo número sea cual sea el tamaño que tenga la circunferencia elegida.

Formula de PI

PI es un número irracional, lo que significa que no es posible calcularlo mediante una fracción cuyo numerador y denominador sean números enteros. Tampoco es posible saber su valor exacto ya que, al ser irracional, sus decimales se extienden hacia el infinito sin posibilidad alguna de poder predecir su valor al carecer de un patrón periódico, o sea, un número o grupo de números que se repitan constantemente después de la coma.

Son muchos los genios matemáticos que han intentado calcular el valor de PI con el mayor número de decimales posible, cosa por otra parte tan fatigosa como inútil. Desde Euler hasta los Hermanos Chudnovsky, pasando por el matemático amateur William Shanks el cual dedicó gran parte de su vida a este trabajo logrando 527 decimales exactos. No obstante, para darle al numerito un uso habitual y usando el sentido común bastará con memorizar solo los primeros decimales después de la coma.

Valor de PI

 

Volviendo a la primera de nuestras fórmulas, y sustituyendo la frase "Longitud de la Circunferencia" por la letra "C" mayúscula y la palabra "Diámetro" por la letra "D" también mayúscula, podemos expresarla de la siguiente manera:

Formula de PI

Para despejar "C" tenemos que pasar "D" al miembro de la derecha. Si en el primer miembro "D" está dividiendo al pasar al segundo miembro lo hará multiplicando, por lo que la fórmula queda como sigue:

Formula de la circunferencia

Como el diámetro (D) mide justo el doble que el radio (r), la fórmula anterior queda como indicamos a continuación, forma esta reconocible por todos ya que es la que nos enseñaron en el colegio.

Formula de la circunferencia

Hasta aquí todo ha sido muy sencillo. Hemos visto de donde sale el número PI (π) y, posteriormente, el origen y la formación de la fórmula para calcular la longitud de la circunferencia. Sin embargo sigue habiendo cosas en torno a esta figura geométrica que quizás no sean tan fáciles de ver. Nos referimos al cálculo de la superficie de la parte interior de la circunferencia, o sea, la superficie del círculo.

Todos conocemos la fórmula para hallar una superficie circular pero... ¿conocemos también como se obtiene?... ¿de donde sale?... ¿Como se llega a ella?. Las respuestas en el siguiente subtema.

LA SUPERFICIE DEL CÍRCULO

Casi al mismo tiempo que nuestro profesor nos ilustraba en geometría plana, o como también se le llama "geometría euclidea", y nos indicaba la fórmula para hallar la longitud de la circunferencia, tuvimos que memorizar además la fórmula para averiguar la superficie del círculo, la cual simbolizamos con la letra "S" mayúscula. Dicha fórmula se expresa así:

Fórmula superficie del círculo

Además de las anteriores, surgen también otras preguntas. Por ejemplo... ¿existe alguna relación entre la fórmula de la circunferencia y la del area del círculo?... ¿por qué aparece el número PI en la fórmula de la superficie circular?... Y en resumidas cuentas... ¿de donde demonios sale la fórmula del area del círculo y como llegamos a ella?.

Para responder a estas preguntas recurriremos al método de las "aproximaciones geométricas". Cojamos un círculo y dividamoslo en partes iguales, como si se tratara de un pastel. Empezaremos por trocearlo en dieciseis partes, todas ellas exactamente iguales. Mira el dibujo.

Circulo con divisiones

Ahora vamos a quedarnos con solo una de estas partes para desarrollar nuestra disertación. Da igual la que escojamos ya que todas son exactamente iguales. Nosotros vamos a elegir una al azar, por ejemplo la siguiente.

Circulo con divisiones

Ahora vamos a girar el trozo de círculo que hemos escogido, colocándolo con su lado más pequeño hacia abajo. Mira la siguiente figura.

Trozo del círculo

Fijate que lo que hemos obtenido hasta ahora es "casi" un triángulo isósceles, pero solo "casi", ya que su "base" no es exactamente una linea recta, sino que es una dieciseisava parte del perímetro del círculo, o lo que es lo mismo, una dieciseisava parte de la circunferencia con curvatura incluida. Graba esto último en tu mente ya que será muy importante para entender lo que diremos en breve. Podemos apreciar la curvatura de la "base" de nuestro "defectuoso" triángulo en la siguiente imagen.

Curvatura de la base

Si la "base" del triángulo isósceles obtenido fuese completamente recta podríamos hallar su superficie mediante la conocida fórmula "base x altura / 2" y el resultado lo multiplicaríamos por 16, que son los triángulos en que hemos dividimos la figura.

Base y altura del triángulo

De esta manera obtendríamos la superficie total del círculo.

Fórmula area círculo

Pero por desgracia, si los hicieramos así los cálculos no serían exactos. Para que lo fueran tendríamos que "enderezar" las bases de todos nuestros triángulos isósceles y entonces sí que tendríamos éxíto usando la mencionada fórmula. ¿Como conseguirlo?.

¡Bueno!... más que "enderezar" las bases de los triángulos... ¿Que tal si los hacemos más pequeños?. ¿Conseguiríamos mejorar esta situación si en lugar de dividir el círculo en 16 lo dividimos en 100 triángulos?. ¿Como quedarían entonces?. Mira la siguiente figura.

Triangulo (100 partes)

Como explicamos en la propia imagen anterior, no hemos pretendido ser precisos al efectuar el fraccionamiento, con lo cual queremos aclarar que las dimensiones de esta última figura no se corresponden con la realidad y ni mucho menos son exactas. Sin embargo, esto no tiene la más mínima importancia. En este momento, lo verdaderamente interesante es que entiendas que la base del triángulo ya no es una curva o, al menos, ha perdido gran parte de su curvatura. ¡Esto es lo verdaderamente importante!.

Base con curvatura menor

Pero no solo se ha reducido la curvatura de la base. Al dividir el círculo en 100 triángulos hemos ganado algo más. Ahora, además, la altura del triángulo mide practicamente lo mismo que el radio del círculo y esto es de una importancia vital como veremos a continuación.

Mejora de la altura

En vista del incremento de perfección y exactitud que hemos conseguido al dividir el círculo en 100 triángulos... ¿Por qué no aumentamos las divisiones a un número muchísimo mayor de 100?. Así llegará un momento en que conseguiremos la precisión total de los cálculos.

La verdad es que no podemos aumentar indefinidamente el número de divisiones del círculo. Excepto algunas pocas cosas que no tienen límites (como la insistencia y el incordio de mi querida suegra), esto si que lo tiene.

Si continuamos dividiendo sin parar llegaría un momento en que los triángulos ya no serían triángulos. Sus lados se solaparían unos con otros y entonces lo perderíamos todo. El punto exacto está justo antes de llegar a ese "límite", justo antes de que los triángulos dejen de ser tales de forma que tengamos el máximo número posible de triángulos isosceles "perfectos".

Es entonces cuando nuestros cálculos serán completamente exactos. Las bases de los triángulos serán completamente rectas y sus alturas medirán lo mismo que el radio del círculo. A ese punto es donde hemos de llegar pero... ¿Como sabremos cuando hemos llegado al "límite"?. Pues lamentablemente no lo sabemos... ¡pero lo podemos imaginar!. Sigue leyendo.

EL "LÍMITE"
Efectivamente, para efectuar de manera fidedigna nuestros cálculos podemos imaginar el "límite", el cual, para obtener el resultado final, no tiene necesariamente que ser el límite correcto. Por ejemplo... supongamos que ese límite está en 1000 triángulos. La superficie de nuestro círculo sería igual a 1000 veces la superficie de uno de esos triángulos. La fórmula sería la siguiente:

Fórmula area círculo

Como resulta que en el límite la altura del triángulo mide lo mismo que el radio de nuestro círculo, lo sustituiremos en la fórmula, la cual queda así:

Fórmula area círculo

Ahora vamos a cambiar la posición que ocupan el número "1000" y el radio "r". Esto no cambia para nada el resultado de la fórmula. Simplemente lo que hacemos es presentarla de manera diferente para que el proceso pueda entenderse más facilmente.

Fórmula area círculo

¿Recuerdas que te dijimos en el subtema anterior que te grabaras algo en la mente?. Te refrescaremos la memoria. Cuando dividimos el círculo en dieciseis triángulos te comentamos que su base era una dieciseisava parte del perímetro del círculo, o sea, una dieciseisava parte de su circunferencia. Eso quiere decir que si hubiéramos multiplicado la longitud de la base de aquel triángulo por 16 hubiéramos obtenido la longitud de su circunferencia.

Volviendo ahora a nuestro círculo actual dividido en 1000 triángulos, si multiplicamos la base de uno de ellos por 1000 también obtendremos la longitud de su circunferencia ¿verdad?. Pues eso es justamente lo que expresa el numerador de la fracción de la fórmula anterior. ¡Mírala bien!.

En el numerador se multiplica la base de uno de los triángulos por 1000. Es exactamente eso... la longitud del perímetro del círculo, o sea, la longitud de su circunferencia. Por lo tanto, sustituyamos dicho numerador por la ya conocida fórmula de la longitud de la circunferencia.

Fórmula area círculo

El número 2 está presente tanto en el numerador como en el denominador de la fracción, por lo que podemos eliminarlos sin ningún problema. La fórmula entonces queda de la siguiente manera:

Fórmula area círculo

Y por último, el radio está multiplicándose a si mismo, por lo que podemos elevarlo al cuadrado y expresar la fórmula del area del círculo tal y como la conocemos habitualmente.

Fórmula FINAL del area del círculo

Aunque el proceso ha sido un poco complejo estamos seguros que ha merecido la pena. Y si todavía te queda alguna duda puedes echarle un ojo al siguiente video, el cual te ayudará a entender lo que el artículo quizás no ha conseguido.

Regístrate... ES GRATISSi no eres usuario "Premium" puedes visualizarlo en nuestro canal de Youtube. También puedes suscribirte al canal y de esta manera no te perderás ninguna de nuestras publicaciones.

Os invitamos a todos a dejar vuestros comentarios al respecto. ¡Hasta pronto amigos!. Nos vemos de nuevo aquí, en Radioelectronica.es, tu punto de encuentro.

 
C O M E N T A R I O S   
matematica

#3 Muy practico y muy facil de entender » 19-12-2018 15:45

Felicitaciones muy buen artículo

MUY BUENA

#2 JENIFER MARIA » 31-03-2018 01:42

:D :D :D :D :D :D :D :D :D MUY BUENA

RE: Relación entre la circunferencia y el círculo

#1 Edgar » 20-08-2017 23:27

Excelente artículo, gracias un abrazo.

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.