Acceso



Registro de usuarios
Contáctenos
Teoría
El puente de Wien (II)

Segundo y definitivo artículo sobre este particular circuito electrónico.

Una vez que hemos analizado a fondo el puente de Wheatstone en el post anterior, el siguiente paso es abordar de lleno el funcionamiento y los detalles del puente que le ha dado nombre a estos artículos, es decir, el puente de Wien.

Si aún no has leido el primero te aconsejamos que lo hagas antes de abordar este, ya que en aquel se dan las pautas y se sientan las bases necesarias para llegar a entender el funcionamiento de este circuito.

Allí vimos como conseguir equilibrar el puente eligiendo apropiadamente el valor de las resistencias que lo forman, usando una fuente de corriente continua. También pudimos comprobar que el puente de Wheatstone puede funcionar y equilibrarse además con una fuente de corriente alterna.

Partiendo de este último detalle, vamos a continuar ahora estudiando como es posible llevar al equilibrio a este nuevo puente, el puente de Wien. Pasa dentro, por favor.

Leer más...
Otros Temas Interesantes
Noticias
AFHA - Curso Electrónica, Radio y TV - Tomo 3

Tomo 3 del curso de Electrónica, Radio y Televisión de AFHA.

En este tercer tomo se habla de la detección de modulación de amplitud, receptor a reacción, osciladores, amplificadores de intensidad, la válvula triodo, amplificación de corrientes continuas, amplificación de corrientes alternas, amplificadores de tensión, características del triodo, resistencia interna, pendiente, factor de amplificación, separación de la componente continua, generadores y amplificadores de potencia, circuito equivalente del triodo, etc...

Leer más...
Radioaficionados
Montar una antena de móvil (II)

Continuamos con el montaje de nuestra antena de móvil. En el artículo anterior vimos la necesidad de que la antena de móvil disponga de un buen plano de tierra ya que de lo contrario tendremos muchos problemas de desadaptación y por lo tanto la relación de ondas estacionarias (ROE) se nos va a disparar. Hemos aprendido que, si no tenemos un buen plano de tierra tendremos que "crear" uno incorporandole a la parte interior del techo o capó del vehículo una superficie metálica de 30 x 30 centímetros o más (sirve por ejemplo una chapa de aluminio) y con las uñas de la "araña" de la base de la antena bien hundida en ella para lograr un contacto eléctrico adecuado.

Pero queda aún por aclarar algunos detalles de la instalación si queremos que nuestro equipo funcione de la mejor manera posible. ¿Que haremos si aparece ruido del motor? ¿Como puedo anular o reducir ese infernal ruido que se produce al arrancar y que aumenta conforme pisamos el acelerador? ¿Puedo conectar la alimentación de la emisora a la toma de mechero del vehículo? ¿Como ajusto la antena y le reduzco la relación de ondas estacionarias (ROE) al sistema? ¿Tengo que cortar necesariamente la varilla de la antena para que funcione mejor? ¿Es cierto que cortando (o añadiendo) cable coaxial puedo ajustar la ROE? Todo esto y más en el siguiente artículo.

Leer más...
Miscelanea
Preamplificador para guitarra eléctrica

¿Te gusta tocar la guitarra eléctrica?. Es posible que hasta seas el afortunado poseedor de una de ellas. Sin embargo, quizás no tengas el equipo de sonido adecuado para oirla con la suficiente potencia y calidad.

Esto último lo decimos porque la mayoría de amplificadores y equipos de audio domésticos del mercado no disponen de una entrada convenientemente adaptada a las características del sonido entregado por este instrumento.

Efectivamente, es habitual encontrar en los amplificadores, e incluso en muchas mesas de mezcla, entradas tipo "AUX", "LINE", "CD", "TUNER" o "PHONO", pero pocos son los que tienen una entrada que indique "GUITAR".

Sabedores de esto, hemos pensado que a muchos de vosotros os interesaría fabricaros un pequeño preamplificador, de funcionamiento seguro y con una elevada calidad, que intercalado entre una entrada auxiliar y el mencionado instrumento os permitirá elevar la señal de este último y aplicarla entonces al equipo del que dispongáis para que el sonido en los altavoces tenga el nivel adecuado.

Os presentamos un circuito que con solo dos transistores BJT, seis resistencias y cinco condensadores os permitirá conseguir este objetivo.

¿Por qué no clicas en "Leer completo..." y compruebas la sencillez del dispositivo?.

Leer más...
Práctica
Soldador de temperatura controlada económico

Si es la primera vez que vas a comprarte un soldador es muy probable que te encuentres en una disyuntiva. En primer lugar, no tienes ni idea a que tipo de trabajos vas a enfrentarte y por ese motivo no te decides por una punta determinada.

Después está el tema de la potencia necesaria para el calentamiento: ¿Estarían bien 15W? ¿o quizás serían deseables 30W? ¿Prefieres a lo mejor un soldador de 60W para trabajos de cierta entidad?.

La evidente realidad es que el soldador tendría que elegirse en consonancia con el tipo de trabajo que uno vaya a realizar. Para soldaduras de componentes muy pequeños, delicados y los de tipo SMD es preferible un soldador de punta fina y de unos 15 watios. Sin embargo, si vas a usarlo para trabajos mas generales (componentes estandar, cables de conexión de cierto grosor, etc...) lo mejor sería acudir a uno de más potencia, como por ejemplo 30 watios.

Y si haces montajes que necesiten de alguna soldadura a masa localizada en la propia caja o chasis metálico del aparato que construyes, entonces lo mejor sería uno de 60 watios como poco y con un generoso tamaño de punta que permita el calentamiento de una zona amplia, de manera que esa soldadura no te salga "fria".

La pregunta que surge es: ¿no existe un soldador que permita la consecución óptima de la mayoría de los trabajos que un técnico electrónico realiza normalmente hoy dia?. La respuesta la tienes a continuación.

Leer más...
Teoría
Energía eléctrica

Después de estudiar los conceptos físicos necesarios podemos abordar ahora el estudio de la disciplina que verdaderamente nos interesa, y así poder acceder al estudio de los fenómenos radioeléctricos. Aceptamos como principio básico que la electricidad es una forma de energía ya que gracias a ella aparecen fuerzas capaces de realizar un trabajo. Estudiemos esto más a fondo y veámoslo experimentalmente.

Recordemos que la energía ni se crea ni se destruye sino que se transforma. En virtud de este enunciado vamos a transformar energía mecánica (por ejemplo) en electricidad (energía eléctrica) y vamos a demostrar, de forma tangible, como esta última es capaz de realizar un trabajo por lo que podremos afirmar que estamos en presencia de una forma de energía, en este caso energía eléctrica. Vamos a comprobarlo de la misma manera como lo comprobó el sabio griego Tales de Mileto hace ahora unos 2600 años. ¿Te interesa?... pués adelante.

Leer más...
Noticias
48 Lecciones de Radio (Jose Susmanscky) Tomo 4

Tomo 4 y último de esta vieja pero extraordinaria colección de información sobre radio.

En este tomo se estudian temas como contrucción de un transmisor de radioaficionado (final), diseño de un receptor de radio de alta calidad y dos bandas, acoplamiento de antenas, tubo de rayos catódicos, figuras de Lissajous, construcción de antenas, laboratorio y taller, etc...

Leer más...

La resistencia óhmica en los conductores

Como seguramente sabrás, los materiales conductores presentan cierta resistencia al paso de la corriente eléctrica. A veces interesa conocer este dato, ya sea porque manejemos instalaciones de baja tensión y alto consumo, porque estemos tratando con lineas eléctricas de una determinada longitud, o por cualquier otra circunstancia que nos obligue a ello.

Como ya vimos en el artículo dedicado a la resistencia eléctrica, existe una fórmula para calcular la resistencia ohmica de un conductor a partir de su sección, su longitud y de la naturaleza material del mismo.

Esta fórmula es la que volvemos a representar otra vez en la cabecera de este artículo. Quizás te parezca extraña, rara, difícil de entender. Pero no es así, como podrás comprobar con la lectura de este artículo.

Según esta fórmula, la resistencia óhmica de un conductor, es decir, la resistencia cuyo valor viene dado especificamente por las características físicas del material empleado y en la que no intervienen otros parámetros como inductancias o capacidades, por lo que su valor es el mismo tanto para corriente contínua como para corriente alterna, viene dada por el producto de la resistividad (ρ) por la longitud del conductor en metros (L) dividido por la sección del mismo en mm2 (S).

Esta fórmula es muy conocida en electricidad y en electrónica por la mayoría de estudiantes, pero... ¿Sabrías explicar de donde rayos sale?.

DESARROLLO DE LA FÓRMULA
Para poder entender correctamente como se forma la expresión anterior vamos a practicar un poco de matemáticas. ¿Recuerdas la regla de tres compuesta que estudiaste en el colegio?. No te preocupes... Si no te acuerdas en este momento tienes la oportunidad de refrescar conocimientos. Olvídate ahora de la fórmula anterior y céntrate en la lógica que te vamos a exponer a continuación.

Supongamos que sabemos la resistencia óhmica que tiene un conductor de cobre de 1 metro de longitud y 1mm2 de sección, y que dicha resistencia ohmica es de exactamente 0,017Ω.

Supongamos que tenemos otro conductor de cobre de 50 metros de longitud y de 2mm2 de sección, del que no tenemos ni idea de cuál es su resistencia óhmica. ¿Como haríamos para conocer dicha resistencia?. Respuesta... una sencilla regla de tres compuesta.

Esto lo podemos leer como sigue: Tenemos en la parte de arriba un conductor de 1 metro de longitud y 1 milímetro cuadrado de sección que tiene una resistencia de 0,017 ohmios. En la parte de abajo tenemos otro conductor de 50 metros de longitud y 2 milímetros cuadrados de sección del que desconocemos su resistencia. Nos toca ahora establecer el cálculo en función de la proporcionalidad de las cantidades de la parte de abajo con relación a las de arriba. Comencemos.

50 metros es más que 1 metro y a más metros más resistencia. Por lo tanto, la proporcionalidad es directa ya que va de más a más.

2mm2 es más que 1mm2 y a más sección menos resistencia. Aquí sin embargo la proporcionalidad es inversa ya que va de más a menos.

Ya tenemos nuestra regla de tres planteada. Quedaría como sigue a continuación, teniendo en cuenta que los términos con proporcionalidad directa se colocan en su posición original y los que tengan proporcionalidad inversa se colocan con la posición invertida (el de arriba irá abajo y el de abajo irá arriba):

Efectuando la multiplicación de los dos quebrados del primer término nos quedaría lo siguiente:

Si ahora despejamos X la expresión queda de esta manera:

¿Has visto bien la fórmula anterior? ¿La has observado detenidamente? ¿No te dice nada?. ¡Claro que sí...!. Resulta que si generalizamos los carácteres y los sustituimos por los parámetros que representan, tenemos la fórmula del principio.

¡Efectivamente!... X representa a la resistencia que desconocemos (R), 0,017 es lo que llamamos resistividad del material usado (ρ), 50 es la longitud del conductor en metros (L) y 2 es la sección del conductor en mm2 (S). Por lo tanto y generalizando, la fórmula anterior podemos expresarla así:

Obtenemos de esta manera la fórmula correspondiente a la resistencia óhmica que presenta un conductor en función de la resistividad del material usado en su fabricación, su longitud en metros y su sección en mm2.

Ya puestos, vamos a terminar los cálculos:

Por lo tanto, la resistencia óhmica de nuestro conductor de cobre de 50 metros de longitud y 2 mm2 de sección es de 0,425 Ohmios.

Y si aún no te ha quedado claro, o te ha quedado alguna laguna, siempre tienes la posibilidad de acudir a nuestro Servicio de Asistencia Técnica si tienes una suscripción abierta en nuestro blog.

 
C O M E N T A R I O S   
RE: La resistencia óhmica en los conductores

#3 rafael guizado » 05-07-2018 17:16

queremos felicitarlos por la sencillez con que hacen referencia al tema y la forma de plantear la solusion del mismo

EXPLICACION

#2 paolo diaz » 17-08-2015 17:02

yo solo entendi que debo multiplicar la resistencia por el largo y luego dividirla por la seccion y tomando como base el valor de 0,017 y sin importar que tan grueso sea el cable y de que material esté echa ,si que es asi lo entendi muy claro .
pero ¿como le ago para saber que seccion de cable usar segun la distancia ?.si la resistencia me quedó claro este ultimo sigue siendo una incognita ,es como un regalo que aun no a sido avierto..
GRASIAS POR LA EXPLICACIÓN

RE: La resistencia óhmica en los conductores

#1 gerardo » 16-05-2013 04:20

creo que esta muy claro como determinar la resistencia de un conductor electrico con ciertos valores dados o conocidos, muy clara explicacion

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.