Acceso



Registro de usuarios
Contáctenos
Teoría
Protección contra sobretensiones

Todo aquel que ha estado reparando equipos de radio durante cierto tiempo sabe que en multitud de ocasiones llegan al SAT los clásicos "cadáveres" que han sufrido una sobretensión.

Normalmente, la gran mayoría de estos equipos vienen protegidos de origen contra inversiones de polaridad, siempre que se le respete el valor al fusible... ¡claro!, pero no todos vienen con una protección contra sobretensiones.

Para aclararle el significado del término a aquellos que no sepan que significa "sobretensión", se trata de aplicarle a la emisora una tensión de polaridad correcta pero bastante más elevada que la nominal. Por ejemplo, "meterle" los 24 voltios de las dos baterías de un camión en vez de los 12 o 13 voltios necesarios.

Y antes dije cadáveres (entre comillas) porque, para desgracia para su dueño, cuando acontece esta vicisitud provoca un verdadero desastre en el aparato; etapas de potencia de audio, finales y drivers de RF, reguladores, etc... Generalmente la sobretensión arrasa con todo, incluida la billetera de su propietario.

Parece mentira pero, como en muchas otras situaciones de la vida, los accidentes más graves podrían reducirse a cero con un costo mínimo y con algo más de previsión.

Si deseas saber como prevenir una sobretensión en tu equipo de radio, de una manera muy simple, lee el resto de este artículo.

Leer más...
Otros Temas Interesantes
Noticias
Información técnica de Sadelta

Comunicamos a todos nuestros suscriptores que hemos añadido en la zona de descargas más información técnica relativa a los micrófonos de la firma Sadelta.

Con esta tanda de información casi hemos completado todos los modelos de micrófonos de sobremesa de esta marca, incluyendo los famosos "Bravo Pro", "Bravo Plus" y "Memory Pro".

Todos aquellos suscriptores que necesiten de dicha información pueden acceder a ella directamente desde este enlace, o a través del link de descargas del menú principal de la parte izquierda de nuestro blog.

A lo largo de esta semana esperamos tener completa toda la sección de esta marca, incluyendo los famosos micrófonos de mano con y sin eco en la mayoría de sus versiones.

Esperamos que, después de todas las solicitudes recibidas para que subamos esta información, nuestros suscriptores puedan disfrutar de ella.

Leer más...
Radioaficionados
Montar una antena de móvil (I)

A cuantos les ha ocurrido alguna vez que habiendo comprado una emisora de C.B. o VHF ha necesitado montar la antena en su automóvil. Pero... ¿Quién puede hacerlo con garantía de éxito?. Resulta que montar la dichosa antena parece ser algo relativamente fácil, pero luego viene algo que es más difícil que la instalación propiamente dicha... ¡El ajuste!.

Efectivamente, el ajuste de una antena montada en un automóvil a veces da muchos quebraderos de cabeza por diferentes razones. Muchos son los que lo han intentado y no lo han conseguido. Sus comentarios, después de la instalación, son generalmente estos: "Mi equipo solo tiene un alcance de unos cientos de metros, no aleja", "Recibir si que recibo, pero a mi no me escuchan", "Cuando llevo un rato intentando modular y toco la emisora... ¡casi me quemo!"... y cosas por el estilo. ¿Te ha ocurrido esto a tí en alguna ocasión?

¿Que te parecería si alguien te explicara exactamente como debes montar y posteriormente ajustar una antena? Aquí en "radioelectronica.es", y leyendo atentamente este artículo, estamos seguros de que serás capaz de montar correctamente una antena de radioaficionado en tu coche, o en el de un amigo, y posteriormente ajustarla a la perfección para que tu equipo de radio rinda al máximo posible sin calentarse más de lo necesario. No solo la recepción de tu emisora será buena, sino que cuando emitas con ella lo hará a las mil maravillas. ¡La única pega es que cuando aprendas todos querrán que le montes la suya!. ¿Te gusta la idea?... Pués sigue leyendo.

Leer más...
Miscelanea
Detector de OVNIS (UFO Detector)

A veces nos encontramos con circuitos que nos sorprenden por su simplicidad y por la efectividad con que realizan su trabajo. En este dia hemos querido publicar uno de estos montajes tan atractivos para muchos entusiastas de la electrónica y, al mismo tiempo, aficionados a la llamada "UFOLOGIA".

Presentamos en esta ocasión los detalles técnicos de un equipo de muy fácil construcción con el que podremos detectar en las inmediaciones la existencia de OVNIs (Objetos Volantes No Identificados), también llamados en inglés UFOs (Unidentified Flying Object).

Se ha demostrado que dichos objetos producen picos de energia electromagnética que pueden ser recibidos por circuitos amplificadores con entrada de alta impedancia. Es precisamente este tipo de circuito el que te proponemos como miscelánea y despedida del año 2015.

Los materiales usados para llevar a cabo este montaje son baratos y muy corrientes. Por lo tanto, te serán facilmente localizables en el mercado. ¿Te atreverás a detectar la presencia de OVNIS con él?.

Leer más...
Práctica
El electroscopio

Llegó la hora de realizar nuestra primera práctica electrónica. Una vez que hemos estudiado la electricidad estática estaría bien ver los efectos que produce esta mediante un artilugio construido por nosotros mismos.

En este artículo vamos a explicar que es un electroscopio y además vamos a fabricar uno con materiales muy comunes a practicamente costo cero. Siendo un instrumento sumamente fácil y económico de construir, con él podremos ver los efectos de la electricidad estática estudiados en el artículo anterior.

William Gilbert (1544-1603), médico y físico inglés, fué la persona que construyó por primera vez un electroscopio para realizar experimentos con cargas electrostáticas. Acérrimo defensor de la teoría copernicana, sus mayores aportaciones a la ciencia tratan sobre electricidad y magnetismo. Al mostrar que el hierro a altas temperaturas (al rojo) no presenta alteraciones magnéticas, se adelantó a los modernos descubrimientos de Curie. Aunque actualmente el instrumento inventado por Gilbert no es más que una pieza de museo, existiendo herramientas muchísimo mas modernas para estos menesteres, resulta muy instructiva su construcción. Prepárate pués para empezar a experimentar con la electricidad estática.

Leer más...
Teoría
Las válvulas de vacío VI

Bienvenidos al sexto artículo de esta serie dedicada a las válvulas de vacío. Vamos a ver a continuación un receptor que hizo furor hace años, cuando las válvulas termoiónicas estaban en su apogeo y los radioaficionados eran verdaderos "manitas", ávidos de experimentación y deseosos de construir con sus propias manos un receptor de radio.

Describiremos el circuito de un receptor que mejora sustancialmente las características del que estudiamos en el artículo anterior. Utilizaba una técnica llamada "detección por rejilla" y, a pesar de que usa prácticamente los mismos componentes que el "detector por placa" visto en el artículo precedente, el aumento de sensibilidad es considerable por lo que fué bastante usado en su época.

En el siguiente artículo estudiaremos el llamado "detector a reacción" con el que, solo a costa de cierta inestabilidad asumible y perfectamente controlable por el usuario, se obtenía una sensibilidad aún superior a la del detector por rejilla. Pero eso será después de conocer el funcionamiento del primero.

Clic en el botón "Leer completo..." para continuar.

Leer más...
Noticias
Calculador estabilizadores zener v.1.2

Publicamos la nueva versión (1.2) de nuestro calculador de circuitos estabilizadores paralelos con diodos zener.

Esta nueva versión trae algunas novedades interesantes, las cuales comentamos en esta noticia.

Leer más...

El receptor elemental (III)

Queremos que este artículo cumpla una doble misión. Por un lado seguiremos ahondando en las partes componentes del receptor elemental para ir avanzando poco a poco hacia nuestro destino. Para ello, nos adentraremos en el estudio del diodo como detector y tocaremos los "detectores de galena" tan usados por nuestros abuelos hace años.

Por otro lado, queremos dejar claro algo referente al sentido de la corriente eléctrica, ya que existe cierta confusión al respecto. Muchos dicen que la corriente eléctrica circula desde el negativo hacia el positivo (eso es lo que enseñamos en esta web). Otros, no obstante, dicen que no, que la corriente va desde el positivo hacia el negativo ya que son muchos los tratados de electrónica que enseñan esto último. ¿Tu que crees?. ¿A que lado te inclinas?.

En honor a la verdad debemos decir que, en lo que al estudio de la electrónica se refiere y a excepción de ciertas parcelas determinadas, prácticamente no influye para nada que la corriente fluya en un sentido o en otro. Sin embargo, no está de más aclarar este concepto y explicar por qué motivo parte de la literatura sobre electricidad y electrónica dice una cosa y parte dice otra muy distinta. ¿Te interesa?. Pasa adentro, por favor.

Como ya hemos dicho en el artículo anterior, la detección de una señal de R.F. modulada en amplitud puede llegar a conseguirse por diferentes medios. Sin embargo, el fin siempre es el mismo; despojar a dicha señal de una de sus mitades, bien de los picos positivos o bien de los negativos. El detector más utilizado desde hace muchos años es el diodo, un componente electrónico de dos terminales, del cual ya conocemos su símbolo: una especie de flecha cuya punta está colocada en un pequeño "tope" rectangular.

Como ya hemos aprendido, el diodo deja pasar la corriente solo en un sentido. Todos los tratados sobre electricidad y electrónica coinciden en esto. Sin embargo, no todos concuerdan en cual es el sentido en que el diodo deja pasar la corriente y cual es el sentido en el que la bloquea. Muchos dicen que la corriente pasa en el sentido de la flecha, mientras que otros dicen que al contrario. ¿Por qué esta discrepancia?. ¿A que se debe?.

La explicación la encontramos en un error que cometió Benjamín Franklin allá por el siglo XVIII, al suponer que la corriente eléctrica era un flujo de cargas que se desplazaban por el circuito desde el borne positivo de la bateria hacia el negativo de la misma. A partir de este momento, toda la literatura escrita sobre el tema reflejó este error. Más de un siglo después, la teoría electrónica de la materia (estudiada en los primeros artículos teóricos de esta web) acabó revelando la verdadera naturaleza de la electricidad, y aclaró que los portadores de cargas eléctricas en los metales son los electrones, los cuales tienen carga negativa, y son los únicos que se mueven. De manera que el sentido real de la corriente eléctrica es justamente el inverso al postulado por Franklin.

No obstante, por razones históricas y dado que los resultados prácticos cambian bien poco teniendo en cuenta un sentido u otro, muchos siguen aceptando el sentido de positivo a negativo definido por Franklin como SENTIDO CONVENCIONAL o SENTIDO FIGURADO y lo usan de esta manera en sus enseñanzas. Sin embargo en esta web seguiremos usando el SENTIDO REAL DE LA CORRIENTE ELÉCTRICA, es decir, DE NEGATIVO A POSITIVO mientras no se indique lo contrario. De todas formas, este punto es interesante tenerlo en cuenta cuando lleguemos al estudio de los semiconductores como se verá en su momento.

Por lo tanto, debemos tener claro que LA CORRIENTE REAL A TRAVÉS DE UN CIRCUITO SE DESPLAZA DESDE EL NEGATIVO DE LA BATERIA HACIA EL POSITIVO DE LA MISMA, y en lo que respecta al diodo, la corriente REAL lo atraviesa ENTRANDO POR SU CÁTODO Y SALIENDO POR SU ÁNODO, justo lo contrario de lo que señala la flecha de su símbolo. Con esto aprovechamos para matar dos pájaros de un tiro, ya que no solo hemos dejado claro el sentido real de la circulacíon de la corriente eléctrica en un circuito y en el diodo, sino que además hemos dicho el nombre de las dos partes de que se compone dicho componente electrónico, y por extensión de sus dos terminales (ánodo y cátodo). Una vez que hemos arrojado luz sobre estos puntos continuamos adelante.

LA GALENA Y EL DIODO
Por todo lo expuesto hasta ahora, es evidente que en nuestro receptor elemental necesitamos la colaboración de un diodo para que haga el trabajo de detectar la señal de RF. En la actualidad no existe ningún problema para localizar este componente. Sin embargo, en los albores de la radio, cuando nuestros abuelos (los radioaficionados de entonces) hacían sus pinitos en este hobby, el único diodo existente era el de vacío o termoiónico (el cual tocaremos en próximos artículos). Pero este era un componente de reciente aparición, muy escaso, necesitaba alimentación, era costoso y de difícil localización, por lo que tenían que apañárselas con materiales sencillos y que estuvieran además disponibles sin grandes problemas y al mínimo costo. ¿Como conseguirían el "diodo detector" que les hacía falta para su receptor elemental?.

Los semiconductores aún no habían saltado a la palestra a principios del siglo pasado. No obstante, para entonces los científicos ya conocían las propiedades detectoras (también llamadas rectificadoras) que adquirían dos cuerpos metálicos de distintas características puestos en íntimo contacto, y aunque quizás los usuarios de los primeros receptores no tenían ni idea de este detalle técnico, la cuestión es que éste era el principio de física que usaban en sus experimentos.

El material con el que se obtenía mejores resultados era la llamada GALENA, un mineral cristalizado natural del grupo de los sulfuros (compuesto de plomo y azufre), fácilmente localizable a la sazón. Bastaba un trozo pequeño de galena, el cual se inmovilizaba en un soporte metálico que hacía las veces de "conexión del cátodo", y una aguja que podía ser de bronce (llamada "bigote de gato") que "pinchaba" a la piedra de galena haciendo las veces de "ánodo". Cada cual lo construía como podía con los materiales de que se disponía entonces. ¿Te lo imaginas?. Para los que no se querían complicar mucho, comenzaron a comercializarse receptores completos que incluían un detector de galena en su circuitería, los cuales hoy dia son verdaderas piezas de museo.

Había que tener mucha paciencia y un tacto especial para conseguir que aquel "pseudo diodo detector" funcionara medianamente bien y con un rendimiento aceptable. Además, debido a su alta inestabilidad, con solo moverlo un poco o símplemente cuando transcurría cierto tiempo, aquello dejaba de funcionar y había que buscarle de nuevo a la piedra de galena "el punto" más apropiado a base de "tanteo" puro y duro para que la detección se efectuara decentemente.

En los receptores comerciales fabricados con válvulas de vacío, el detector utilizado era un diodo temoiónico. Pero este componente, además de los inconvenientes que hemos recalcado ya, no era práctico usarlo en un simple y económico receptor, el cual se montaba exclusivamente por pura afición y por su bajo costo.

Al cabo de cierto tiempo llegaron los llamados "diodos de cristal", desbancando a la galena en su supremacía como detector elemental y relegándola a un segundo plano. También llamados "diodos de germanio" o "detectores de germanio", ya que este es el material semiconductor usado en su construcción, estos diodos son seguros, estables y no adolecen de ninguno de los inconvenientes de los detectores de galena y, además, seguían sin necesitar ningún tipo de alimentación. Sin embargo, aunque uno de estos receptores elementales estuviera fabricado con un diodo de cristal en la parte detectora, por extensión y por tradición se le seguía llamando "radio galena", nombre que muchos le asignan aún hoy en dia.

El diodo detector de germanio conserva el mismo principio físico de funcionamiento que el detector de galena. La piedra de galena se sustituye por un minúsculo trocito de germanio, el cual se ha "dopado" (ya veremos más adelante lo que significa esto), al que se le une una pequeñísima "punta" a modo de "bigote de gato" que contacta y presiona al germanio. El conjunto se encierra en una pequeña cápsula de cristal de la que brotan dos terminales de contacto, uno de ellos conectado al germanio y otro a la punta de presión.

Se denomina "CÁTODO" al terminal conectado al germanio y "ÁNODO" al que conecta la punta metálica de presión. La corriente a través de un diodo, sea del tipo que sea, siempre circula por su interior entrando por el cátodo y saliendo por el ánodo. Ya hemos dicho anteriormente cual corresponde a un terminal y a otro en su símbolo gráfico. En el componente físico, podemos distinguir el terminal correspondiente al cátodo porque la cápsula de cristal se marca con una pequeña franja circular que la rodea en uno de sus lados.

Por todo lo dicho hasta el momento, el detector que nosotros usaremos para nuestro receptor elemental será un diodo de germanio, ya que nos ahorraremos muchísimos inconvenientes y ganaremos en seguridad y estabilidad. Además, hoy dia puede resultar muy complicado encontrar en el mercado un cristal de galena natural.

FUNCIONAMIENTO REAL DEL DIODO
Este subtítulo quizás pueda confundir a alguien. ¿Es que quizás lo que te hemos estado enseñando hasta ahora con referencia al diodo no es cierto?. ¡No exactamente!. Verás... Hasta ahora, todo lo que te hemos dicho sobre el diodo sería incuestionable... ¡SI FUERA UN COMPONENTE ELECTRÓNICO PERFECTO!. Pero por desgracia no es así. No existen diodos semiconductores perfectos y todos, absolutamente todos, tienen ciertas deficiencias que a continuación vamos a señalar.

El término "diodo" deriva de los dos vocablos griegos "Di" y "Odo", que significa "dos caminos". Por lo tanto, estamos ante un componente en el que la corriente eléctrica puede circular por dos caminos posibles. Uno de esos caminos es el que va del cátodo al ánodo y el otro es el que va del ánodo al cátodo. Pero... ¿No hemos dicho antes que el diodo solo conduce en un sentido? ¿Por qué ahora hablamos de dos sentidos diferentes?

La respuesta es que... el diodo semiconductor ni es tan buen conductor cuando conduce, ni es tan buen aislante cuando no lo hace. ¿Que no te aclaras?. A ver como te lo explico. Hablemos en términos concretos.

Resulta que cuando al diodo lo polarizamos de manera que SI conduzca, con tensión negativa en el cátodo y positiva en el ánodo, la resistencia que opone al paso de la corriente NO ES DE CERO OHMIOS como cabría esperar si fuese perfecto. Con respecto al diodo de germanio podemos decir que esta resistencia ronda los 100 Ohmios. En este caso decimos que esta es la RESISTENCIA DIRECTA DEL DIODO ya que lo hemos POLARIZADO EN SENTIDO DIRECTO y en estas condiciones podemos decir que SI conduce, o por lo menos presenta una resistencia relativamente baja al paso de la corriente eléctrica.

Cuando al diodo lo polarizamos de manera que NO conduzca, con tensión positiva en el cátodo y negativa en el ánodo, la resistencia que opone al paso de la corriente NO ES INFINITA como la de un aislante perfecto. En el caso del diodo de germanio que estamos tratando, esta resistencia podemos cifrarla sobre 1.000.000 de Ohmios, o lo que es lo mismo, aproximadamente de 1MΩ. En esta otra ocasión decimos que esta es la RESISTENCIA INVERSA DEL DIODO ya que lo hemos POLARIZADO EN SENTIDO INVERSO y en estas condiciones se dice que NO conduce, o más exactamente que su resistencia al paso de la corriente eléctrica es muy elevada.

Ahora tenemos la base para decir que el diodo semiconductor no conduce únicamente en un sentido. La realidad es que EN SENTIDO DIRECTO (de cátodo a ánodo) lo hace con mucha más facilidad y oponiendo bastante menos resistencia (unos 100Ω) que EN SENTIDO INVERSO (de ánodo a cátodo), modo en el que la corriente pasa con mucha dificultad porque el componente opone una resistencia mucho mayor (aproximadamente 1MΩ).

CONSECUENCIAS DE LO ANTERIOR
De esto último podemos deducir que, en nuestro receptor elemental, la señal aplicada al auricular y una vez detectada por el diodo no está completamente exenta de sus pulsos negativos, sino que durante estos impulsos negativos la intensidad de corriente a través del auricular será muchísimo menor que durante los positivos ya que el diodo estará polarizado en sentido inverso. Si representamos gráficamente este detalle, vemos que la señal de R.F. que recibe el auricular aún tiene impulsos negativos, muchísimos más pequeños que los positivos pero existentes al fin y al cabo. La realidad es que el auricular se activa mediante la diferencia de intensidad de unos impulsos y otros, solo que esta diferencia es tan grande que el auricular prácticamente no se entera de que los negativos están ahí.

Huelga decir que si montamos el diodo en la posición inversa, los impulsos con mayor intensidad serán los negativos, y aquellos que resultarán casi imperceptibles serán los positivos. El efecto será el mismo, solo que en esta ocasión los impulsos que activarán el auricular serán los negativos, los cuales son idénticos a los positivos en cuanto a forma y a intensidad. En ambos casos el auricular reproducirá la señal de audio de B.F. exactamente con la misma fidelidad, solo que de un modo (suministrando impulsos positivos) curvará la membrana hacia adentro y colocado del modo opuesto (suministrando impulsos negativos) la curvará hacia afuera.

Hasta aquí las nociones sobre el diodo detector. En el próximo artículo hablaremos del selector. ¡No te lo pierdas!.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.