Acceso



Registro de usuarios
Contáctenos
Teoría
Introducción

Cada día que pasa la electrónica abre nuevos campos a la investigación, la industria y al bienestar humano. Millones de personas a través de toda la Tierra desarrollan su actividad dentro de una de sus ramas. A nosotros nos ha tocado vivir en esta época caracterizada por el vertiginoso desarrollo de esta ciencia y nadie es capaz de predecir donde acabará.

Sin embargo, nos hemos acostumbrado a ella y a nadie le sorprende en la actualidad tantas novedades y portentos debidos a la electrónica. Ya no nos llama la atención el "¡más difícil todavía!", pero estamos seguros de que quedaría asombrado si pudiera conocer y calibrar la naturaleza, los entresijos y todo lo que rodea a esta ciencia que está de moda. Nada mejor para ello que comenzar retrocediendo en el tiempo para recordar algunos hechos trascendentales que hicieron historia.

Leer más...
Artículos Relacionados
Otros Temas Interesantes
Noticias
AFHA - Electricidad Teórico Práctica - Tomo 2

Tomo 2 del curso de Electricidad Teórico Práctica de AFHA.

Leer más...
Radioaficionados
Construir un watímetro de radiofrecuencia (RF)

Es normal que al radioaficionado, como ya hemos apuntado en otro lugar de este blog, le guste construirse sus propios aparatos. A aquellos que disponen de los suficientes conocimientos teórico-prácticos, el instrumento que traemos a la palestra en este artículo les resultará quizás excesivamente simple y fácil de construir.

Sin embargo, nuestra idea no es hacer llegar esta información únicamente a personas versadas en electrónica, sino también a aquellas que no lo están tanto, y por supuesto a todas aquellas que están ávidas por realizar experimentos de este tipo, tengan o no tengan conocimientos técnicos.

La herramienta que vamos a describir a continuación, además, les resultará de muchísima ayuda a todos ellos. Les servirá no solo para símplemente saber con que potencia sale un determinado transceptor de radio, sino también para ajustar sus propios emisores, exprimiendo al máximo las capacidades de cada uno de sus equipos.

Una vez construido, el watímetro de RF que tenemos entre manos se convertirá en un instrumento imprescindible e insustituible en nuestro rincón de radio. Pongamos pues manos a la obra.

Leer más...
Miscelanea
Monitor para la batería del automóvil

Es curioso, pero la verdad es que a todos nos ha pasado alguna vez lo mismo. Nos levantamos una mañana de frio invierno, con prisas porque tenemos el tiempo justo para llegar al trabajo (el que tenga esa suerte). Introducimos la llave de contacto de nuestro auto y la giramos. ¡SORPRESA!... el motor de arranque no voltea o lo hace con desgana.

El coche no furula, no arranca... Entonces algunos manifestamos nuestro enfado en un idioma desconocido, emitiendo ciertos sonidos guturales como.... "Grrrrrrrrr!!!!!". Otros, algo más "expresivos", comenzamos a lanzar por nuestra boquita ciertos vocablos malsonantes, dirigidos sobre todo hacia nuestro sufrido auto que ya tiene, como poco, cinco o seis años.

Sin embargo, esta situación la podríamos haber evitado si hubieramos tenido instalado el circuito que describimos en el presente artículo. Se trata de un simpático piloto de color rojo que nos avisará antes de tiempo de que ha llegado la hora de sustituir la batería de nuestro coche.

Si has leido los dos primeros artículos de la sección "Básico" estamos seguros que no vas a tener problemas para asimilar lo que sigue. ¡Vamos allá!

Leer más...
Práctica
Microfono inalámbrico en FM "mini"

Con solo cuatro resistencias, unos pocos condensadores, un transistor y una pila vamos a construir un micrófono inalámbrico en FM de muy reducidas dimensiones.

Somos conscientes de la gran diversidad de circuitos de este tipo que circulan por la red. Sin embargo, muchos de ellos no están suficientemente detallados y a la hora de llevarlos a la práctica son problemáticos. Otros no tienen diseñada la correspondiente placa de circuito impreso, por lo que su montaje resulta bastante fastidioso.

Con nuestro circuito hemos querido llenar el hueco que creemos que falta en este ámbito; conseguir un micrófono inalámbrico en FM sencillo, eficaz, casi miniatura, fácil de implementar y con todos los datos pormenorizados necesarios para poder llevarlo a cabo sin problemas.

La información que corresponde a este artículo se la podrán bajar en formato PDF todos nuestros visitantes, registrados y no registrados, ya que se colgará en la sección de descargas gratis. Agradeceremos mucho su colaboración si hacen comentarios con sus experiencias al respecto.

¿Os apuntais a este reto?

Leer más...
Teoría
El transformador

Corría el año 1851 cuando el físico alemán Heinrich Daniel Ruhmkorff ideó la bobina que lleva su nombre. Se trataba de un generador que permitía producir tensiones elevadísimas, del orden de decenas de miles de voltios, a partir de la corriente continua de una batería. Con ello se logró conseguir la fuente de tensión necesaria para crear diferentes dispositivos que posteriormente traerían grandes beneficios para la humanidad.

La bobina de Ruhmkorff fué utilizada, por ejemplo, por Heinrich Rudolf Hertz para la realización de sus experimentos con ondas electromagnéticas, lo que significaría los inicios de la radio. También comenzó a utilizarse en los equipos de rayos X como generador electrovoltáico de alta tensión y en los equipos telegráficos de la época. Además, la invención de Ruhmkorff se utilizó en investigaciones relacionadas con diferentes ramas de la física y de la química.

En realidad, Heinrich Daniel Ruhmkorff lo que diseñó fué el primer transformador eléctrico, ya que de lo que se trataba era de un bobinado primario con unas pocas espiras de hilo relativamente grueso por el que se hacía circular una corriente continua pulsante y de un devanado secundario con muchísimas espiras más que el primario y realizado con hilo mas fino. Por lo tanto, Ruhmkorff tuvo el privilegio de fabricar el primer transformador elevador de la historia de la humanidad. ¿Quieres seguir aprendiendo cosas relacionadas con los transformadores? Sigue leyendo, por favor.

Leer más...
Noticias
Curso de ELECTRÓNICA BÁSICA 03

PUBLICADO EL CAPÍTULO 3

Publicado el tercer capítulo de nuestro CURSO DE ELECTRÓNICA BÁSICA. Puedes visualizarlo en este mismo artículo.

Leer más...

El divisor de tensión visto graficamente

Aurora boreal"Una imagen vale más que mil palabras". Así reza el famoso axioma del refranero español, el cual parece provenir de un antiguo proverbio chino que, traducido al castellano, diría algo así como "el significado de una imagen puede expresar diez mil palabras".

En cualquier caso, este precepto muestra el potencial que puede llegar a tener una ilustración para transmitir, explicar o comunicar determinados aspectos de algo. Y precisamente esa es nuestra pretensión con la publicación de este artículo.

Pongamos un ejemplo de lo que te estamos diciendo... ¿Como transmitirías a otra persona la belleza y magnificencia de una aurora boreal?. Seguro que te resultaría muy complicado. Sin embargo, y dejando de lado la maravillosa sensación de verla in situ, si le enseñas una foto ya tendrás gran parte del trabajo realizado.

Con este artículo queremos enseñarte a resolver un divisor de tensión resistivo mediante un gráfico de coordenadas cartesianas. Es muy posible que de esta manera te quede mucho más claro en la mente el funcionamiento de este tipo de circuitos. Además, será un primer paso para la resolución por este mismo medio de circuitos más complicados que incluyan componentes activos y para el estudio de sus curvas características.

¡Vamos allá...!

En la siguiente ilustración puedes ver el divisor de tensión con el que vamos a realizar los cálculos y a partir del cual vamos a dibujar nuestro gráfico.

Divisor de tensión básico

Como ves, tenemos una batería de 12 voltios conectada a dos resistencias en serie, una de 4 KΩ y otra de 8 KΩ. Esto da como resultado la división de la tensión total de la batería en dos partes más pequeñas a las que hemos llamado V1 y V2.

Para variar, y en conformidad con el título de este artículo, en lugar de calcular estas dos tensiones solo mediante la ley de Ohm vamos a hacerlo además con la ayuda de un sencillo gráfico de coordenadas cartesianas usando para ello el cuadrante superior derecho de las mismas, lo que nos permitirá tener una visión gráfica muy interesante del divisor de tensión.

Pero para llevarlo a cabo, primero debemos de tener muy claro que es exactamente lo que vamos a graficar y la manera en que vamos a graficarlo.

LO PRIMERO... ESCALAR LAS COORDENADAS
Para empezar, lo primero que hay que hacer es escalar adecuadamente las coordenadas del gráfico que vamos a dibujar. Para la escala de tensiones usaremos el eje de la abscisa o eje X (el horizontal) y su valor máximo será la tensión de la batería que tenemos en el circuito. Nuestra batería suministra una tensión de 12 voltios, lo que nos da el primer dato para elaborar la escala del mencionado eje X.

Para indicar la intensidad de corriente que circula por las resistencias usaremos el eje de la ordenada o eje Y (el vertical). Para escalarlo adecuadamente tenemos que calcular la intensidad que circularía al aplicarle la tensión TOTAL de la batería a la resistencia de MENOS valor. En nuestro caso esta resistencia es la de 4 KΩ.

Aplicando la ley de Ohm obtenemos 3 mA (12 V / 4000 Ω = 0,003 A). Este es el dato que necesitábamos para elaborar la segunda escala de las coordenadas, la del eje vertical, y será el valor máximo de intensidad de corriente que podrá alcanzar nuestro gráfico.

Ahora ya podemos mostrar las coordenadas que vamos a usar con este circuito, una vez escaladas con los datos anteriores. Son las que puedes ver a continuación.

Coordenadas cartesianas escaladas

Ya solo nos queda dibujar encima de este gráfico las dos rectas necesarias, una por cada resistencia.

Ni que decir tiene que podemos usar una escala con cantidades mayores, nunca menores, tanto en lo que se refiere a voltios como a miliamperios. Pero conseguiremos mayor precisión si procedemos de la manera que hemos indicado.

TRAZANDO LA RECTA PARA LA RESISTENCIA DE 8 KΩ
Lo que haremos a continuación será dibujar en el gráfico de coordenadas que hemos creado una línea recta por cada una de las resistencias implicadas en el divisor de tensión. Cada una de estas líneas nos indicará la intensidad de corriente que circula por la resistencia cuando a esta se le aplica una determinada tensión, comprendida entre CERO y el voltaje de la batería.

En el caso que nos ocupa, para dibujar cada linea nos bastará simplemente con la localización de DOS puntos de esa recta. El primero lo tendremos en el caso de aplicarle a la resistencia CERO voltios, o sea, una tensión nula. El segundo al administrarle a la resistencia la tensión total de la batería. Una vez localizados esos dos puntos los uniremos mediante una línea recta y ya tendremos el gráfico correspondiente a esa resistencia concreta.

Comencemos por ejemplo con la de mayor valor, o sea, la de 8 KΩ. Para conseguir lo que hemos dicho en el párrafo anterior usaremos el circuito que te mostramos seguidamente.

Primer punto para R2

Al estar el interruptor abierto a la resistencia no le llega la tensión de la batería y, en consecuencia, no circula por ella ninguna corriente eléctrica. Por lo tanto, el primer punto lo ubicamos justo en el origen de coordenadas, ya que con tensión CERO aplicada a la resistencia la intensidad que circula por ella también será CERO.

Primer punto recta 8K

Para hallar el segundo punto, obligatorio para trazar la recta de R2, necesitaremos cerrar el interruptor y aplicar la ley de Ohm.

Segundo punto para R2

Teniendo en cuenta que la tensión de la batería es de 12 V y el valor de la resistencia es de 8 KΩ, a través de ella circulará una intensidad de corriente de 1,5 mA (12 V / 8000 Ω = 0,0015 A). Con esto ya tenemos el segundo punto que buscábamos.

Segundo punto recta 8K

Ahora, para acabar el gráfico correspondiente a la primera de las resistencias elegida (8 KΩ), solo nos queda unir los dos puntos hallados con una línea recta.

Recta de la resistencia de 8K

Ha resultado fácil... ¿verdad?. No obstante, el trazado de la recta para la segunda resistencia (R1 de 4 KΩ) deberemos hacerlo de manera ligeramente distinta por las razones que te comentaremos a continuación.

TRAZANDO LA RECTA PARA LA RESISTENCIA DE 4 KΩ
La recta del gráfico anterior está dibujada desde el punto de vista de la resistencia R2 de 8 KΩ. ¿Que queremos decir con esto?. Que si ahora intentamos dibujar la recta para R1 (la de 4 KΩ) en las mismas coordenadas y usando el mismo sistema nos vamos a encontrar con una sorpresa. Me interesa que esto lo veas por tí mismo.

Al igual que antes, usaremos un circuito compuesto por la batería de 12 voltios, un interruptor y la resistencia R1 de 4 KΩ.

Primer punto para R1

Teóricamente, el primer punto necesario para trazar la nueva recta es el ORIGEN de las coordenadas ya que al aplicarle una tensión de CERO voltios (tensión NULA) obtenemos tambien un valor NULO, o sea CERO miliamperios, como valor de la intensidad de corriente que circula a su través.

Primer punto recta resistencia 4K

Al igual que hicimos con la resistencia R2, ahora le aplicamos los 12 voltios de la batería a R1 y tomamos nota de la intensidad de corriente que circula a través de ella.

Segundo punto para R1

Al aplicarle los 12 voltios obtenemos 3,0 mA según la ley de Ohm (12 V / 4000 Ω = 0,003 A). El segundo punto tendrá entonces esas coordenadas.

Segundo punto recta resistencia 4K

A partir de la ubicación de estos dos puntos ya podemos crear la recta para la resistencia de 4 KΩ (R1). Es la de color azul que puedes ver en la siguiente imagen.

Recta de la resistencia de 4K

Como puedes apreciar en la siguiente figura, ya tenemos la recta de color rojo para la resistencia de 8 KΩ (R2) y la de color azul para la de 4 KΩ (R1). Sin embargo, pregúntate... ¿te dicen algo?.

Rectas para ambas resistencias

La verdad es que el conjunto de colores se ve muy bonito, pero... ¿Te das cuenta que estas dos lineas no te dan ninguna información interesante?. Entonces... ¿para que hemos trabajado tanto?. ¿Hemos estado perdiendo el tiempo?. ¡Tranquilo!... que solo hemos pasado por alto un detalle que ahora te vamos a aclarar.

Fíjate que la recta de color azul para la resistencia de 4 KΩ (R1) la hemos elaborado sin tener en cuenta que en el circuito ya existía otra resistencia, la R2 de 8 KΩ, de la que previamente habíamos dibujado su propia recta. En realidad, lo que hemos hecho ha sido graficar las dos rectas en las mismas coordenadas desde una vista individual y no colectiva.

Pero lo que nosotros queremos en realidad es un gráfico que nos de información sobre el circuito que forman las dos resistencias en serie, o sea, información sobre el divisor de tensión que configuran ambas.

Para ello, la segunda recta que dibujemos la hemos de graficar desde el punto de vista de la primera, o sea, teniendo en cuenta que antes ya existía una linea recta que corresponde a otra resistencia y que las escalas de valores de las coordenadas han sido utilizadas según esta última. Creo que con un ejemplo lo verás claro.

Volvamos a calcular los DOS puntos para trazar la recta de la resistencia R1 de 4 KΩ, pero en esta ocasión lo haremos tomando como referencia el mismo lugar que usamos para R2. Analiza la siguiente ilustración.

Primer punto OK para R1

Observa como ahora estamos evaluando la tensión desde el mismo sitio en el que antes se ubicaba la resistencia R2. El proceso que seguiremos será el mismo, pero esta vez nos situaremos en la posición que antes ocupaba la resistencia R2 para medir la tensión.

Como ves, tenemos 12 voltios y sin embargo no existe corriente alguna recorriendo el circuito ya que el interruptor está abierto. Por lo tanto, de estos datos sacamos el primer punto.

Primer punto OK recta para resistencia de 4K

Para conocer las coordenadas del segundo punto cerramos el interruptor. Entonces el circuito quedaría de la siguiente manera.

Segundo punto OK para R1

Ahora, en el punto en el que estamos midiendo la tensión tenemos CERO voltios ya que en bornas de un interruptor cerrado no existe tensión alguna. Sin embargo a través del circuito está circulando una corriente de 3 mA. Estos son los datos necesarios para colocar en las coordenadas el segundo punto.

Segundo punto OK recta para resistencia de 4K

Uniendo estos dos puntos obtenemos la linea recta que representa a R1, la resistencia de 4 KΩ.

Recta OK de la resistencia de 4K

Ahora si que tenemos las dos lineas rectas que queríamos desde un principio. Como ya debes saber, la de color azul representa a R1 y la roja a R2. Son las de la siguiente imagen.

Rectas OK para ambas resistencias

Ahora si que nuestro gráfico nos está suministrando la información que buscábamos. ¿Puedes verla o todavía no lo tienes claro?. Vamos a ponértelo más fácil aún. Fíjate en las lineas discontinuas de la siguiente imagen.

Intersección de las dos rectas

Están trazadas a partir de la intersección de las dos rectas y son perpendiculares a los ejes de la abscisa y la ordenada. En este último eje, el vertical, la linea discontinua nos indica el valor de la intensidad de corriente que circula a través de ambas resistencias y nos dice que es de 1 mA.

Valor de la intensidad de corriente por las resistencias

Por otra parte, en el eje horizontal, la linea discontinua nos suministra dos datos interesantes. Por un lado nos dice la tensión que cae en R1 y por el otro la que cae en R2. Fíjate en la siguiente imagen.

Caídas de tensión en cada resistencia

Podemos comprobar estos datos aplicándole la ley de Ohm a nuestro circuito. Te facilitamos el esquema con todas las referencias en la siguiente imagen.

Datos del divisor de tensión

Y por si aún no has entendido lo que hemos querido transmitirte con este artículo, te dejamos un video para que te ayude a asimilar lo que hemos escrito.

Regístrate... ES GRATISSi no eres usuario "Premium" puedes visualizarlo en nuestro canal de Youtube. También puedes suscribirte al canal y de esta manera no te perderás ninguna de nuestras publicaciones.

Como ya te indicamos al principio, la información que he acabamos de presentar te será de mucha utilidad cuando estudies circuitos con componentes activos, como son los transistores.

Y aquí acaba este artículo. Esperamos que te haya gustado y te haya servido. Por favor, déjanos un comentario transmitiéndonos tus pareceres sobre el mismo.

Pronto publicaremos más información. Hasta entonces, nos vemos siempre aquí, en Radioelectronica.es, tu punto de encuentro.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.