Acceso



Registro de usuarios
Contáctenos
Teoría
Las válvulas de vacío II

Una vez que hemos visto la manera en que podemos desarrollar por medios eléctricos el efecto termoiónico, entramos de lleno ahora en la descripción de las válvulas de vacío, las cuales fueron en su tiempo el máximo exponente del citado fenómeno físico en lo que toca a la recepción y emisión de señales de radio entre otras aplicaciones.

Comenzaremos hablando del llamado diodo termoiónico, componente muy usado en los tiempos de los receptores a válvulas como rectificador en fuentes de alimentación y demodulador de señales de R.F. entre otros aspectos, aunque aquí no acaban todas sus aplicaciones.

El diodo termoiónico, también conocido como diodo de vacío, puede considerarse la válvula más elemental y sencilla de todas las que han existido. Fundamentalmente se trata de una ampolla de vidrio completamente cerrada, dentro de la cual se ha practicado el vacío, o sea, que se le ha extraído todo el aire de su interior.

Dispone de dos electrodos, como puede deducirse de su nombre ("di-odo" del griego "dos caminos"), uno llamado ánodo y el otro llamado cátodo, tal y como ocurre en el caso del diodo semiconductor.

Leer más...
Otros Temas Interesantes
Noticias
48 Lecciones de Radio (Jose Susmanscky) Tomo 2

Tomo 2 de esta vieja pero extraordinaria colección de información sobre radio.

En este tomo se estudian temas como instrumentos de medida, receptor regenerativo, radiofrecuencia sintonizada (amplificación directa), superheterodino, transformadores, etc...

Leer más...
Radioaficionados
Construir un watímetro de radiofrecuencia (RF)

Es normal que al radioaficionado, como ya hemos apuntado en otro lugar de este blog, le guste construirse sus propios aparatos. A aquellos que disponen de los suficientes conocimientos teórico-prácticos, el instrumento que traemos a la palestra en este artículo les resultará quizás excesivamente simple y fácil de construir.

Sin embargo, nuestra idea no es hacer llegar esta información únicamente a personas versadas en electrónica, sino también a aquellas que no lo están tanto, y por supuesto a todas aquellas que están ávidas por realizar experimentos de este tipo, tengan o no tengan conocimientos técnicos.

La herramienta que vamos a describir a continuación, además, les resultará de muchísima ayuda a todos ellos. Les servirá no solo para símplemente saber con que potencia sale un determinado transceptor de radio, sino también para ajustar sus propios emisores, exprimiendo al máximo las capacidades de cada uno de sus equipos.

Una vez construido, el watímetro de RF que tenemos entre manos se convertirá en un instrumento imprescindible e insustituible en nuestro rincón de radio. Pongamos pues manos a la obra.

Leer más...
Miscelanea
Luneta térmica (antivaho) como antena AM-FM

Es probable que alguna vez te haya pasado lo que a mi.

Se activó la alarma del radio-reloj a las 8:00 de la mañana en punto. Todavía casi dormido me incorporé y corrí las cortinas oyendo las noticias en mi emisora favorita. Unos espléndidos rayos de sol penetraron de golpe en mi habitación y acabaron con la oscuridad que hasta entonces había en ella.

Acto seguido procedí al correspondiente aseo matutino para, justo después, sentarme a desayunar. El café estaba exquisito y la tostada, regada con aceite de oliva virgen extra, me supo a gloria bendita.

Aquel dia me levanté contento, muy contento. Tenía muy buenas espectativas. Como soy un enamorado de la radio, me gusta escuchar las tertulias matinales en el coche de camino al trabajo, lo primero que hago al subir al vehículo es conectarla.

He de aclarar que mi coche duerme en plena calle. No soy el afortunado conductor que dispone de garaje. ¡Que raro!... No logro sintonizar ninguna emisora... ¿Que está pasando?.

Paro el coche y me apeo para comprobar la antena... ¡LA ANTENA!... ¡Coñ.!... ¡Que me han robado la antena!.

Esto me estropeó completamente el dia. El cabreo que pillé fue monumental, de campeonato. Entonces tomé una decisión.

Para que esto no me ocurriera más, a partir de entonces decidí usar la luneta térmica, también conocida por el término "antivaho", como antena para mi receptor de radio AM/FM. Si alguien tenía la intención de dejarme sin escuchar la radio tendría que llevarse la luna trasera, y ya eso le iba a resultar más complicado que robar una simple antena... ¿no crees?.

Leer más...
Práctica
Microfono inalámbrico en FM "mini"

Con solo cuatro resistencias, unos pocos condensadores, un transistor y una pila vamos a construir un micrófono inalámbrico en FM de muy reducidas dimensiones.

Somos conscientes de la gran diversidad de circuitos de este tipo que circulan por la red. Sin embargo, muchos de ellos no están suficientemente detallados y a la hora de llevarlos a la práctica son problemáticos. Otros no tienen diseñada la correspondiente placa de circuito impreso, por lo que su montaje resulta bastante fastidioso.

Con nuestro circuito hemos querido llenar el hueco que creemos que falta en este ámbito; conseguir un micrófono inalámbrico en FM sencillo, eficaz, casi miniatura, fácil de implementar y con todos los datos pormenorizados necesarios para poder llevarlo a cabo sin problemas.

La información que corresponde a este artículo se la podrán bajar en formato PDF todos nuestros visitantes, registrados y no registrados, ya que se colgará en la sección de descargas gratis. Agradeceremos mucho su colaboración si hacen comentarios con sus experiencias al respecto.

¿Os apuntais a este reto?

Leer más...
Teoría
El magnetismo - Imanes

Todos sabemos lo que es un imán (no me refiero a ese señor que dirige la oración en el Islam). Está claro que el ser humano llegó a conocer el magnetismo gracias a los imanes, sin los cuales no sabemos en que estado estarian hoy en dia las cosas. Pero a pesar de que los imanes sean objetos tan conocidos por la mayoría podemos decir que también son grandes desconocidos... ¿que porqué?... pues porque conocemos de sobra los efectos que pueden llegar a producir y sin embargo no sabemos prácticamente nada de la causa por la que ocurren. Es decir, todos sabemos que un imán atrae a otros cuerpos metálicos de hierro y acero pero son pocos los que saben "como rayos lo hace". ¿Cual es la fuente de esa atracción tan llamativa?.

Imagina que eres el padre de Pedrito. Pedrito es un niño muy listo que un buen dia conoce la existencia de los imanes. Como Pedrito tiene muchas inquietudes comienza a investigar y en medio de esas investigaciones te asalta cuando llegas del trabajo y te pregunta... ¡¡Papi, papi...!! ¿Porqué los imanes se pegan al hierro?. Entonces tu vas y le respondes al niño... ¡Porque son magnéticos!. El niño no entiende nada y entonces pregunta otra vez... ¿Y que significa ser magnético?... Te quedas algo confuso con la pregunta pero respondes... ¡¡Pues que tienen magnetita!!. El niño te mira con algo de recelo, y un poco mosca de nuevo te pregunta... ¿Y porqué la magnetita se pega al hierro?. Tu ya casi no sabes que responder y le dices... ¡Por la fuerza magnética que tiene!. El niño, muy serio, se queda ahora mirándote sin parpadear, como si se oliera que no tienes ni idea, y te hace la pregunta definitiva... ¿Y como funciona esa fuerza magnética para hacer que el imán se quede pegado al hierro?... Mejor que leas este artículo antes de seguir contestándole al niño.

Leer más...
Noticias
Amplificadores de potencia de audio Philips

Extenso manual de 55 páginas en alta calidad con datos, características y esquemas de aplicación suministrados por el autor, de una amplia variedad de circuitos integrados e hibridos fabricados por Philips.

Leer más...

Cálculos con resistencias I

En un artículo anterior ya hemos hablado sobre la ley de Ohm y hemos desarrollado las tres fórmulas a las que podemos acudir para solucionar un determinado problema. Sin embargo, eso no basta en la mayoría de las situaciones, siendo necesario que adquiramos la soltura necesaria para afrontar con éxito los casos reales a los que nos veremos obligados a hacer frente.

Para adquirir esa soltura, no nos queda mas remedio que practicar, practicar y practicar. ¿Recuerdas aquella frase que mencionamos en uno de nuestros artículos?; "Teoría sin práctica es parálisis y práctica sin teoría es ceguera". Para que no nos quedemos "paralizados", tenemos que habituarnos a ensayar con la ley de Ohm a poco que tengamos oportunidad.

Bién es verdad que a veces la práctica necesaria para el ejercicio de alguna disciplina es complicada de conseguir, sobre todo en los tiempos difíciles que nos ha tocado vivir, en los que las dificultades a veces nos agobian y no nos queda apenas tiempo libre.

Para intentar paliar esto en lo posible, este artículo irá acompañado de un videotutorial que los usuarios premium podrán bajar de la zona de descargas. Esperamos que resulte de vuestro agrado. ¡Comencemos a calcular!.

En un principio, vamos a repasar las tres formas que puede llegar a tener la Ley de Ohm. Recordemos que la d.d.p. o tensión se representa con la letra "V", la resistencia con la "R" y la intensidad de corriente con la "I".

Para calcular la d.d.p. o voltaje usaremos:

Para calcular la resistencia:

Y finalmente, para calcular la intensidad de corriente:

Calculemos ahora la intensidad de corriente que circula a través de un sencillo circuito compuesto por una resistencia (R1) y una batería (B1). Mira la figura que sigue:

Como puedes ver, el circuito es muy básico. Sin embargo, podemos aprender algunas cosas de él. Como resulta que conocemos el valor de la resistencia (1K) y el de la tensión de la batería (9V) apliquemos la ley de Ohm para hallar la intensidad de corriente que circula a su través. Tenemos que dividir la tensión aplicada en voltios (9) por el valor de la resistencia en ohmios (1K = 1000), de la manera siguiente:

Como hemos comprobado, el cálculo resulta muy fácil de realizar en este circuito, simple y sin ninguna complicación. Cambiemos ahora la incógnita y tratemos de calcular la d.d.p. de la batería, conociendo el valor de la intensidad de corriente y la resistencia.

En esta ocasión es la primera de las fórmulas anteriores la que debemos de utilizar, la cual nos indicará la tensión de la batería en voltios multiplicando la intensidad de corriente en amperios por el valor de la resistencia en ohmios.

Aclararte aquí que el símbolo ≈ de la fórmula anterior significa "aproximadamente igual", y se usa cuando la cantidad resultante de una determinada operación matemática no es exacta, pero si muy aproximada al resultado que se indica.

Por último vamos a echarle un vistazo a otro esquema similar a los anteriores, solo que en esta ocasión los datos que tenemos son la intensidad a través del circuito y la tensión de la batería.

Debemos de hallar el valor de la resistencia "R1", por lo que la fórmula a aplicar la conocemos de sobra. El cálculo se hace de la manera siguiente:

Hasta aquí el desarrollo en la práctica de las tres fórmulas básicas de la ley de Ohm aplicadas al circuito mas simple posible, formado por una resistencia y una batería. Vamos a complicar un poco las cosas ¿te parece bién?. Fíjate en el circuito que sigue a continuación:

¿Serías capaz por ti mismo de hallar el valor de la resistencia necesaria (R1) para que la lamparita BL1 no se funda y funcione a pleno rendimiento? Si te fijas, BL1 necesita solo 1,5 voltios para funcionar adecuadamente. Sin embargo, la batería de que disponemos es de 6 voltios.

Necesitamos un valor de resistencia que absorba la d.d.p. sobrante, de modo que a la lamparita solo le llegue el voltio y medio que necesita. Una vez hallado el valor correcto, el amperímetro ha de marcar aproximadamente los 300mA que exige la lampara.

La solución la encontrarás en el videotutorial que complementa a este artículo y que podrás visualizar a continuación.

Regístrate... ES GRATISSi no eres usuario "Premium" puedes visualizarlo en nuestro canal de Youtube. También puedes suscribirte al canal y de esta manera no te perderás ninguna de nuestras publicaciones.

No dejes de visitarnos. Nos vemos de nuevo aquí, en Radioelectronica.es, tu punto de encuentro.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.