Acceso



Registro de usuarios
Contáctenos
Teoría
Las ondas (II)

Cuando hemos hablado del movimiento ondulatorio producido por la piedra que cae en el estanque de aguas tranquilas no hemos ahondado demasiado en su mecánica ni en sus peculiaridades. El estudio de tales ondas puede darnos muchas ideas y proporcionarnos algunos conocimientos relacionados con el resto de ondas, incluidas las ondas electromagnéticas utilizadas en las transmisiones de radio. Para un observador poco experimentado, las ondas producidas por la piedra al caer no son mas que unas pocas circunferencias que se dibujan en el agua y que se alejan del punto en donde cayó el pedrusco, aumentando progresivamente de diámetro y disminuyendo de intensidad. Sin embargo, hay mucha más información implícita en esas circunferencias de la que se ve a simple vista, solo que debemos conocer la manera de extraerla para así poder asimilarla.

Una vez dicho esto surgen algunas preguntas relacionadas con lo expuesto hasta el momento. ¿Que métodos podemos utilizar para conocer estas ondas mas a fondo? ¿Que podemos aprender de ellas que aplique también a los demás tipos de ondas? ¿Cuales son sus características principales? Todas las respuestas vienen a continuación.

Leer más...
Artículos Relacionados
Otros Temas Interesantes
Noticias
AFHA - Curso Electrónica, Radio y TV - Tomo 4

Tomo 4 del curso de Electrónica, Radio y Televisión de AFHA.

En este cuarto tomo se habla de amplificadores de sonido, altavoces, impedancia, acoplamiento, curva de máxima disipación, triodos de potencia, tetrodos, pentodos, parámetros, emisión secundaria, proyecto de un amplificador, punto de trabajo, sensibilidad de potencia, amplificador de dos etapas, distorsión de amplitud y de frecuencia, curva de respuesta, frecuencia de corte, teorema de Fourier, grabación y reproducción de discos, piezoelectricidad, etc...

Leer más...
Radioaficionados
Oscilador de laboratorio hasta 200 MHz

Para un radioaficionado es importantísimo saber usar y manipular los circuitos resonantes. Conocer a que frecuencia oscila uno de estos circuitos es, la mayoría de las veces, uno de los problemas mas habituales con los que tiene que enfrentarse el experimentador.

No obstante, en muchas ocasiones no se dispone del instrumental adecuado para realizar una medida de este tipo. Aunque es posible que dispongamos de un frecuencímetro, en la mayoría de las ocasiones no es suficiente, ya que es probable que no tengamos los medios para hacer oscilar al circuito tanque en cuestión.

Por esta razón, traemos a nuestro blog un pequeño dispositivo con el que podremos realizar esta medida con total seguridad y fiabilidad, además de ser útil para otros menesteres. Básicamente se trata de un oscilador al que únicamente le falta el circuito resonante objeto de nuestra medición. Dicho oscilador se acompaña de la circuitería necesaria para poder usarlo con nuestro frecuencímetro sin que el acoplamiento de este último afecte lo más mínimo a su frecuencia de resonancia. Y lo mejor de todo es que este circuito puede hacer oscilar "casi cualquier cosa que tenga espiras".

El montaje se lleva a cabo con solo seis transistores, uno de ellos el conocido JFET de canal "N" tipo BF-245, de muy fácil localización en el mercado, e incorpora técnicas para estabilizar la amplitud de la señal producida dentro de unos márgenes razonables, pudiendo llegar a oscilar hasta casi los 200 MHz.

Leer más...
Miscelanea
Luneta térmica (antivaho) como antena AM-FM

Es probable que alguna vez te haya pasado lo que a mi.

Se activó la alarma del radio-reloj a las 8:00 de la mañana en punto. Todavía casi dormido me incorporé y corrí las cortinas oyendo las noticias en mi emisora favorita. Unos espléndidos rayos de sol penetraron de golpe en mi habitación y acabaron con la oscuridad que hasta entonces había en ella.

Acto seguido procedí al correspondiente aseo matutino para, justo después, sentarme a desayunar. El café estaba exquisito y la tostada, regada con aceite de oliva virgen extra, me supo a gloria bendita.

Aquel dia me levanté contento, muy contento. Tenía muy buenas espectativas. Como soy un enamorado de la radio, me gusta escuchar las tertulias matinales en el coche de camino al trabajo, lo primero que hago al subir al vehículo es conectarla.

He de aclarar que mi coche duerme en plena calle. No soy el afortunado conductor que dispone de garaje. ¡Que raro!... No logro sintonizar ninguna emisora... ¿Que está pasando?.

Paro el coche y me apeo para comprobar la antena... ¡LA ANTENA!... ¡Coñ.!... ¡Que me han robado la antena!.

Esto me estropeó completamente el dia. El cabreo que pillé fue monumental, de campeonato. Entonces tomé una decisión.

Para que esto no me ocurriera más, a partir de entonces decidí usar la luneta térmica, también conocida por el término "antivaho", como antena para mi receptor de radio AM/FM. Si alguien tenía la intención de dejarme sin escuchar la radio tendría que llevarse la luna trasera, y ya eso le iba a resultar más complicado que robar una simple antena... ¿no crees?.

Leer más...
Práctica
Cálculo de circuitos con diodos LED

Casi todo el mundo sabe de que se trata cuando se habla de diodos LED, esos pequeños componentes electrónicos que tienen la facultad de iluminarse cuando son atravesados por una corriente eléctrica. Además de que algunos modelos pueden llegar a desarrollar un considerable nivel lumínico el gasto energético que ocasionan es muy pequeño, por lo que en la actualidad ya han aparecido infinidad de lámparas domésticas basadas en ellos para casi todo tipo de aplicaciones.

Sin embargo, y centrándonos en los diodos LED estándar de 3 y de 5 milímetros usados en electrónica, muchos son los que se preguntan como se conectan a una pila o a una fuente de alimentación, quizás para usarlo como testigo de funcionamiento de algún equipo, o para hacer algún trabajo manual del colegio.

Hemos oido comentarios de todo tipo al respecto. Algunos dicen que el LED se conecta a la pila sin más, ya que piensan que funcionan con un determinado voltaje, algo parecido a las lamparitas de las linternas. Otros piensan que hay que poner dos o tres diodos más en serie, porque de lo contrario pueden "fundirse". Algunos no concretan y dicen que además del diodo LED y la pila o batería, el circuito debe de incorporar algún otro componente que lo proteja. ¿Que crees tu?.

El presente artículo tratará de arrojar luz sobre este tema, el cual en muchas ocasiones no está claro en la mente de algunos.

Leer más...
Teoría
Diferencia de potencial - Descarga eléctrica

Según lo estudiado en artículos anteriores, podemos recordar que entre dos cuerpos con distinta carga eléctrica podíamos provocar una descarga por tres sistemas diferentes. Estos son: por contacto, mediante un conductor o por medio de un arco o chispa. En este artículo vamos a ampliar los conceptos de circuito eléctrico, descarga de un cuerpo y corriente eléctrica.

En principio la propia palabra, descarga, hace entrever la existencia de un cuerpo que contiene una carga en si mismo y que esta carga se transfiere a otro cuerpo distinto debido a la propia descarga. ¿Quiere esto decir que el hecho de poner en contacto un cuerpo fuertemente cargado con uno que no tiene ninguna carga provocará la descarga total del primero? Para salir de dudas lée este artículo completo.

Leer más...
Noticias
Abacom sPlan 8.0

Existen en el mercado muchos programas para diagramar (dibujar) esquemas electrónicos pero, desde mi punto de vista, ninguno con las excepcionales características del sPlan 8.0 de la firma alemana Abacom. Y esto lo digo por muchas razones, parte de las cuales voy a exponerte en el siguiente artículo.

Puede que a ti te guste otro distinto y no voy a discutirte tus motivos pero por favor, permíteme la pregunta... ¿conoces este?.

En el párrafo anterior he afirmado que en esta noticia voy a contarte parte de los argumentos que tengo para decir lo que digo. El resto lo podrás ver y oir en los videos que poco a poco iré publicando si existe suficiente interés.

Si quieres saber más sobre este extraordinario e inigualable software y disfrutar del primer video de la serie no lo dudes y haz clic en Leer completo...

Leer más...

Cálculos con resistencias II

En otros artículos de este blog ya hemos hablado de las resistencias, componente pasivo importantísimo en electrónica.

Nos hemos referido a ellas cuando hemos hablado de la ley de Ohm, hemos visto los montajes en serie y en paralelo, y también hemos estudiado algún que otro detalle relativo al cálculo de su valor junto con los diodos led.

Mediante el presente artículo continuamos adelante en este sentido, tocando temas que consideramos esenciales para comprender los circuitos electrónicos avanzados.

Puede que una resistencia te parezca un componente de poca o ninguna importancia. Nada mas lejos de la realidad.

Podemos decir sin temor a equivocarnos que si no existiera este elemento, la electrónica no existiría tal y como la conocemos hoy dia. Por ello te invitamos a continuar leyendo este artículo en el que desvelaremos más cosas relativas a este simple pero imprescindible componente electrónico.

Como hemos dicho al principio, cuando hemos tocado el tema de las resistencias hemos hablado entre otras cosas de la ley Ohm. Dicha ley, como casi seguro conocerás, relaciona la tensión y la intensidad de corriente que circula a través de una determinada resistencia con el valor óhmico de la misma. Sin embargo, hasta ahora hemos dicho poco o nada sobre la potencia que puede soportar este componente. Profundicemos un poco en este campo.

POTENCIA DE DISIPACIÓN
¿Que es la potencia de disipación de una resistencia? Sencillamente, es la potencia máxima que puede soportar sin que su valor se vea alterado a lo largo del tiempo. Cuanto más se caliente una resistencia, más peligro corre de que su valor se vea modificado a lo largo de su vida útil.

La idea básica debe ser calcular la potencia de disipación de una determinada resistencia y sobredimensionarla lo suficiente para que su valor permanezca invariable con el paso de los años. Los fabricantes ya han tenido en cuenta esto e indican dicha potencia de disipación para que esta nunca se sobrepase.

La fórmula de la potencia eléctrica que soporta un componente a través del cual circula una corriente eléctrica es la siguiente:

P = V · I

Siendo "P" la potencia consumida de la fuente de energía, "V" la tensión en sus bornes e "I" la intensidad de corriente que circula a su través.

A priori, en esta fórmula no se tiene en cuenta la resistencia del componente pero, desarrollandola en otro sentido, si que es posible determinar la potencia en base al valor de la resistencia junto con otro parámetro, bién sea la tensión en sus bornes o la intensidad de corriente que la atraviesa.

DESARROLLANDO LA FÓRMULA DE LA POTENCIA
Si imaginamos el más simple de los circuitos, en el que existe una pila y una resistencia conectada a ella, según la ley de Ohm conociendo dos de los parámetros podemos calcular el tercero. Esto ya lo hemos visto en artículos precedentes.

Por ejemplo; la fórmula según Ohm para calcular la intensidad de corriente que circula a través de la resistencia de la ilustración de arriba es:

Si en la fórmula básica de la potencia (P=V·I) sustituimos la "I" por el término de la derecha de la expresión equivalente anterior, tenemos lo siguiente:

Y si simplificamos, la expresión se nos queda como sigue:

Con lo que ya tenemos una fórmula para calcular la potencia consumida por una resistencia en función de la tensión aplicada a sus bornes.

Ahora vamos a intentar conseguir otra fórmula para calcular la potencia en función de la intensidad de corriente que circula a través del componente. Para ello, aquí también partimos de la ley de Ohm, pero en este caso usamos la versión que calcula el valor de la tensión:

Hacemos un inciso para recordarle a nuestros lectores que como signo de multiplicar no solo se usa el aspa (x), sino que también puede usarse el punto medio (·), siendo indiferente la utilización de uno u otro.

Si ahora volvemos a la fórmula básica del cálculo de la potencia (P=V·I) y sustituimos en este caso la "V" por el término de la derecha de la expresión equivalente de arriba, nos queda lo siguiente:

Y como en el caso anterior, si simplificamos obtenemos lo que sigue:

Y así conseguimos nuestra nueva fórmula para calcular la potencia consumida por una resistencia en función de la intensidad de corriente que la atraviesa.

¿Que tal si nos ponemos manos a la obra y comenzamos a usar las dos nuevas fórmulas recién descubiertas?.

EJEMPLOS DE CALCULO
Supongamos que tenemos un circuito, tan simple como también inservible en la práctica, constituido por una resistencia y una batería.

Tenemos que calcular la potencia de disipación que necesita la resistencia con los datos que se nos dan en el esquema anterior. Aplicamos en este caso la primera de las "nuevas" fórmulas, es decir, la que usa para el cálculo los valores de la tensión y la resistencia. Así que tenemos:

De forma que la potencia que absorberá la resistencia anterior será de 2,81 watios. Por lo tanto, la potencia de disipación necesaria para la resistencia de este ejemplo ha de ser como mínimo de 3 watios, siempre un poco por encima de la potencia que consumirá del generador.

Si prefiriéramos hacer el cálculo mediante la fórmula clásica (P=V·I) tendríamos que hallar primero la intensidad de corriente que atraviesa a la resistencia mediante la ley de Ohm, de esta manera:

Y posteriormente usar la fórmula antedicha:

Vemos como ambos procedimientos conducen al mismo resultado, pero con el primero nos ahorramos una operación. Vamos con otro ejemplo:

En este caso lo que conocemos es la intensidad de corriente que circula a través de la resistencia, y el valor de esta última el cual es de 1500Ω. Se impone la aplicación de la segunda de las fórmulas:

En esta ocasión, la potencia mínima de disipación de la resistencia tendría que ser de 4 watios, como siempre algo superior a la potencia consumida del generador.

También aquí pudiéramos haber hecho la cuenta por la via de la fórmula clásica, para lo cual primero tendríamos que haber calculado la caida de tensión en la resistencia mediante la ley de Ohm:

Una vez conocida la caida de tensión, aplicamos la fórmula P=V·I del siguiente modo:

De nuevo podemos observar como ambas maneras de cálculo coinciden en los resultados, sin embargo siempre es preferible utilizar aquella que requiere menos operaciones.

OTRAS FÓRMULAS INTERESANTES
Por la via de la investigación podemos hallar otras fórmulas interesantes, como por ejemplo, la que calcula la máxima tensión aplicable a una resistencia para no sobrepasar su potencia de disipación. Se puede llegar a esta expresión desde la primera de las fórmulas anteriores:

También se puede desarrollar la segunda de las fórmulas para hallar la máxima intensidad de corriente soportada por una resistencia conociendo su potencia de disipación:

Aquí damos por terminado este artículo. Creemos que ya es suficiente por ahora. En próximas entregas hablaremos de más cosas interesantes. No faltes, te esperamos aquí, en Radioelectronica.es, tu punto de encuentro.

 
C O M E N T A R I O S   
ayuda

#4 Marco Cheng » 21-04-2020 17:54

como se puede calcular una resistencia sabiendo la potencia consumida y el voltage?

Gracias.

#3 Maribel » 14-02-2018 04:30

Les agradezco esta información. Encontré un dato que estaba buscando para mí tarea pero que no encontraba, hasta que entré aquí :D

RE: Cálculos con resistencias II

#2 Dionisio » 03-03-2014 22:05

Cito a gerardo:
solo como forma representativa de la formula


Según he leido, el artículo trata precisamente de eso Gerardo, de representar de una forma sencilla las fórmulas básicas, para que cualquier persona con pocos o ningún conocimiento del tema las entienda. Para estudiar ingeniería hay otras webs, amigo mio.

Saludos.

RE: Cálculos con resistencias II

#1 gerardo » 16-05-2013 04:04

me parece interesante el uso de las formulas, aunque aqui me parece que es la aplicacion mas sensilla de un circuito, solo como forma representativa de la formula

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.