Acceso



Registro de usuarios
Contáctenos
Teoría
Potencia y Energía

Como dijimos en el artículo anterior, el término potencia ya empezamos a relacionarlo con la electricidad y la electrónica. Nos resulta familiar porque lo hemos visto muchas veces cuando hemos leido algún manual sobre las caracteristicas de un equipo eléctrico o electrónico.

Para introducir otro concepto, el de energía, vamos a explicar que se entiende por potencia. Sin embargo en esta ocasión vamos a hacerlo desde un punto de vista aplicado a la mecánica y estableceremos una definición del término. De esta manera nos resultará fácil llegar hasta donde queremos... ¿Recuerdas que definimos la electricidad como una forma de energía? Pues esa es precisamente nuestra próxima meta, saber exactamente de que hablamos cuando lo hacemos de la energía eléctrica. Para ello vamos a empezar con un ejemplo muy simple. ¿Nos acompañas?.

Leer más...
Otros Temas Interesantes
Noticias
Curso de ELECTRÓNICA BÁSICA 03

PUBLICADO EL CAPÍTULO 3

Publicado el tercer capítulo de nuestro CURSO DE ELECTRÓNICA BÁSICA. Puedes visualizarlo en este mismo artículo.

Leer más...
Radioaficionados
Cambiar C.I. de audio a President Taylor ASC (I)

Quizás eres uno de los dichosos poseedores de una emisora President Taylor, la mas vendida en nuestro país (España) durante muchos años. Equipo diseñado y producido por Uniden, uno de los mejores fabricantes (por no decir el mejor de todos) de equipos destinados a la Banda Ciudadana. Pués si tienes uno de estos transceptores... ¡¡Enhorabuena!!.

Sin embargo, un buen dia conectas tu emisora y te llevas un disgusto. Resulta que no oyes a nadie como normalmente lo haces, el altavoz ha enmudecido. Además, cuando intentas emitir, aunque tu portadora es recibida en los s-Meters de otros radioaficionados con la fuerza de siempre, tu modulación brilla por su ausencia y nadie te oye. El dia anterior habías estado modulando perfectamente, sin problemas de ningún tipo. ¿Que ha pasado?.

Si eres el afortunado dueño de una President Taylor ASC y te encuentras en una situación similar, sigue leyendo porque posiblemente descubras la solución a tu problema.

Leer más...
Miscelanea
Tira a matar - Juego de reflejos

¿Con que rapidez responde tu cuerpo a los impulsos externos?. ¿Cuanto tiempo necesitarías para reaccionar ante un peligro inminente?. Si oyes un disparo cercano ¿tus reflejos te hacen "salirte del pellejo"?.

Para poner a prueba la rapidez de respuesta a tus estímulos nerviosos hemos ideado un pequeño circuito con el que podrás medirte en este aspecto con otra persona, y de paso cultivar la faceta "reflexológica" del ser humano. Se trata de algo así como un duelo, lógicamente sin pistolas y sin balas pero eso si, al ser del todo electrónico, con botones y con luces.

Una vez construido el dispositivo se dispondrán dos botones de mayor o menor tamaño, los cuales accionarán sendos pulsadores conectados a nuestro circuito. Al oir una señal, los dos participantes se apresurarán a pulsar su correspondiente botón.

El más rápido de los dos se llevará el gato al agua y ganará el juego. Su victoria quedará fehacientemente constatada porque la luz que le corresponde indicará ese hecho.

Comenzamos con esta reseña una nueva categoría de artículos a la que llamaremos "Miscelánea", en la que tendrán cabida una amplia variedad de temas con multitud de contenidos. Esperamos que esta novedad sea de tu agrado.

Leer más...
Práctica
El teléfono yogur y su versión electrónica

Es muy probable que cuando éramos niños hayamos jugado alguna que otra vez con el llamado "teléfono yogur", probablemente fabricado por nosotros mismos ya que su construcción no ofrece prácticamente ninguna dificultad.

Con solo un par de recipientes de plástico vacíos, que casi siempre se conseguían una vez que habíamos consumido los yogures (de ahí el nombre por el que se le conoce normalmente), unos metros de hilo suficientemente resistente y poco más, teníamos un juguete con el que pasábamos horas y horas de ocio y diversión.

Mientras uno de nosotros aproximaba el bote de yogur a su oreja el otro lo hacía con el que le correspondía a su boca y comenzaba la "transmisión" del mensaje. Y aunque la distancia entre los dos interlocutores no podía exceder de algunos metros, la transmisión de la "fonía" que se conseguía con este artilugio, aunque débil, era relativamente buena.

La verdad es que aquellos eran otros tiempos. Nos divertíamos con cualquier cosa. Y aunque hoy este juguete quizás le siga llamando la atención a los más pequeños, no hay que olvidar que vivimos en la era de la electrónica y casi todos esperamos algo más. De ese "algo más" hablamos en este artículo. Vamos a presentarte la versión electrónica del teléfono yogur. ¿Quieres ver de que se trata?. ¡Adelante!.

Leer más...
Teoría
Las ondas (V)

Llegamos al último artículo relativo a las ondas. A través de los cuatro artículos anteriores hemos visto más o menos profundamente su naturaleza. Con lo estudiado hasta el momento ya tenemos suficiente conocimiento para continuar adelante, sin embargo vamos a seguir hablando un poco a lo largo de este artículo sobre algunas de las peculiaridades especiales de las ondas y también de algunas de sus aplicaciones prácticas, lo que ampliará nuestro entendimiento sobre este tema tan interesante.

Además vamos a explicar el significado de algunas expresiones comunes en radio, que quizás antes de leer este artículo no tenías claras en tu mente y que sin embargo las oímos todos los dias. Es posible que te sorprenda lo que vas a leer a continuación, o quizás no, pero en cualquier caso vamos a intentar que la lectura sea amena, agradable y entretenida.

Cuando acabes de leer estas páginas puedes dejar tu comentario, si lo deseas, y decirnos que te ha parecido ¿te agrada la idea?. Pues adelante.

Leer más...
Noticias
AFHA - Electricidad Teórico Práctica - Tomo 2

Tomo 2 del curso de Electricidad Teórico Práctica de AFHA.

Leer más...

Electromagnetismo (I)

En nuestro artículo teórico anterior en el que hablábamos del magnetismo y de los imanes, dijimos que la electricidad produce magnetismo y que el magnetismo produce electricidad. En realidad una cosa y la otra están íntimamente unidas. Como ya hemos comentado, la electricidad y el magnetismo son dos aspectos diferentes de un mismo fenómeno físico llamado electromagnetismo y es precisamente ese fenómeno lo que en este artículo vamos a comenzar a tratar. Este conocimiento es de absoluta necesidad para seguir nuestro estudio.

Para bién o para mal, el electromagnetismo está muy presente en nuestras vidas; en cada electrodoméstico que tenemos en casa, en todos los sistemas de comunicaciones actuales (las señales de humo utilizadas por los indios norteamericanos no es un sistema de comunicación actual), en los automóviles y motocicletas, en los sistemas de posicionamiento global o GPS, en los sistemas de telemetría, en el registro y reproducción del sonido, en los equipos medicos y quirúrgicos utilizados en los hospitales, etc... Es tan vasto el campo de aplicación del electromagnetismo en la vida real que nos faltaría espacio en este artículo para nombrar cada una de estas posibilidades. Por la importancia que tiene, es vital que conozcas mas profundamente este fenómeno. Por lo tanto, estás obligado a seguir leyendo.

MAGNETISMO POR CORRIENTE
Ya hemos dicho que la electricidad produce magnetismo y que el magnetismo produce electricidad.

En este apartado vamos a estudiar la primera parte de esta afirmación y vamos a demostrar que podemos crear un campo magnético mediante el uso de una corriente eléctrica. Sabemos, según lo estudiado en el artículo dedicado al magnetismo, que la aguja de una brújula señala en la dirección Norte-Sur siempre que no se vea afectada por algún otro campo magnético que no sea el terrestre. Si efectivamente hacemos que dicha aguja se desvíe de su posición natural estaremos demostrando la existencia de un campo magnético que está influyendo en su funcionamiento normal y que interfiere en su correcta señalización. Profundicemos un poco sobre esto.

Vamos a coger nuestra brújula, una simple pila, un interruptor y un hilo de cobre rígido de una sección entre 1,5 y 2,5 mm. Dispongamos estos componentes como mostramos en la ilustración. Mientras no cerremos el interruptor y no circule corriente alguna por el conductor de cobre nuestra brújula marcará la orientación Norte-Sur correcta. Pero... ¿que ocurre en el momento en que cerremos el interruptor y comience a circular la corriente eléctrica a través del conductor de cobre?.

Al hacer esto la aguja de la brújula se desplaza de la posición que tenía antes de hacer pasar la corriente eléctrica y deja de señalar la orientación correcta (hacer clic para ver animación). Con esta evidencia demostramos la existencia de un campo magnético producido por la electricidad que hemos hecho circular, y hemos de hacer constar que antes de hacer circular la corriente dicho campo magnético no existía. Lo que hemos creado se llama "CAMPO ELECTROMAGNÉTICO" al tratarse de un campo magnético producido por una corriente eléctrica.

En el artículo anterior también hemos hablado de otro método para poner en evidencia el campo magnético creado al hacer pasar una corriente eléctrica por un conductor. En esta ocasión vamos a utilizar una cartulina y unas pocas limaduras de hierro además de la consabida pila, el interruptor y el conductor eléctrico de cobre rígido. Fíjate en el dibujo adjunto. Mientras el interruptor permanezca abierto no ocurre nada y las limaduras de hierro permanecen exactamente igual que cuando las depositamos en la cartulina ya que no circula ninguna corriente eléctrica. En el momento en que cerremos el interruptor y la corriente eléctrica comience a circular... ¿que pasa?. Como por arte de magia las limaduras se situan alrededor del alambre de cobre formando círculos concentricos tomando como centro al conductor que atraviesa la cartulina. Ten en cuenta que a veces hay que dar unos pequeños golpecitos a la cartulina para ayudar a las limaduras de hierro a situarse. Queda claro con este experimento que la corriente eléctrica crea un campo magnético circular alrededor de nuestro conductor de cobre.

CORRIENTE POR MAGNETISMO
Como hemos repetido hasta la saciedad, la electricidad y el magnetismo están intimamente unidos y caminan juntos de la mano. Por lo tanto es lógico pensar que el fenómeno anterior es reversible, es decir, al igual que la electricidad puede producir magnetismo, el magnetismo podría tener la facultad de producir electricidad. Pués efectivamente va a ser que sí. A partir de un campo magnético podemos obtener una corriente eléctrica y además podemos comprobarlo de forma muy sencilla.

Para ello necesitamos un imán de herradura que tenga una potencia relativamente alta y un miliamperímetro que sea lo suficientemente sensible, preferiblemente analógico y con cero central. Con hilo de cobre rígido de unos 2 o 3 milímetros de sección tenemos que hacer una varilla recta conectada al miliamperímetro con hilo de cobre flexible como vemos en el dibujo. Dicha varilla rígida la colocaremos entre los polos del imán y le imprimiremos un movimiento de vaivén. Cuando la varilla atraviese las lineas de flujo del imán podremos observar como el instrumento señala el paso de una corriente y lo hará cada vez que la varilla se mueva dentro del campo magnético del imán. Dicha corriente tendrá un sentido u otro dependiendo de la dirección que tome la varilla en su movimiento de vaivén.

Fíjate en esto; si dejamos inmóvil la varilla y es el imán el que movemos el fenómeno se repite, es decir, que la corriente eléctrica se produce de igual manera tanto cuando dejamos inmovil la varilla y movemos el imán, como cuando dejamos inmóvil el imán y lo que movemos es la varilla. Lo que es absolutamente necesario para que aparezca la corriente eléctrica es que exista movimiento entre imán y varilla y que esta última atraviese el campo magnético del imán, ya sea moviendo una cosa o la otra. Lógicamente, para que la corriente producida sea permanente también el movimiento deberá permanecer en el tiempo.

Gracias a este experimento podemos afirmar que al igual que una corriente eléctrica puede producir un campo magnético la situación inversa también es cierta, es decir, que cuando un conductor atraviesa un campo magnético y alguno de los dos se mueve con respecto al otro, entonces se origina una corriente eléctrica. Esto que acabamos de decir es una de las cosas más importantes descubiertas en el campo de la electricidad, y sus aplicaciones son inmensas como veremos mas adelante.

SENTIDO DEL CAMPO MAGNÉTICO
Lo que determina el sentido de las lineas de fuerza del campo magnético de un conductor por el que circula una corriente eléctrica es precisamente la dirección de dicha corriente. Por esta razón, en los cables eléctricos paralelos dichos campos magnéticos tienden a anularse el uno al otro al circular la corriente por ambos al mismo tiempo y en direcciones diferentes, es decir, mientras por uno de los cables la corriente se aleja por el otro retorna.

El sentido del campo magnético en un conductor recto puede determinarse facilmente mediante la llamada REGLA DE LA MANO IZQUIERDA. Su enunciado dice lo siguiente:

Si un conductor se coge con la mano izquierda y hacemos que nuestro dedo pulgar apunte en el sentido en que circula la corriente, los dedos que rodean el conductor indicarán la dirección del flujo magnético

Para entender a la perfección el significado de esta regla basta con mirar la ilustración adjunta. Como ya hemos mencionado, la regla de la mano izquierda tiene aplicación siempre que estemos tratando con un conductor recto. Pero... ¿que ocurre al darle a nuestro conductor la forma de una espira?. El próximo tema promete ser interesante.

SOLENOIDES O BOBINAS
Si cogemos nuestro conductor recto y le damos la forma de una espira resulta que nuestro invento se comporta como un pequeño imán, con su polo norte y su polo sur. El polo norte es la parte de la espira por la que sale el flujo magnético, mientras que el polo sur es la parte de la espira por la que entra dicho flujo. La realidad es que el campo magnético creado por nuestra espira es muy débil, sin embargo, por débil que sea existe, está ahí. La pregunta ahora es... ¿Que podemos hacer para reforzar ese campo magnético y hacerlo mas poderoso?.

¿Recuerdas la frase del fabulista griego Esopo "La unión hace la fuerza"? Esta frase hace hincapié en la importancia del trabajo en equipo, y eso es precisamente lo que vamos ha hacer con nuestra espira. Vamos a fabricar lo que se llama un solenoide o bobina juntando muchas espiras de manera que sus campos magnéticos se van a sumar y vamos a obtener uno con una fuerza mucho mayor. Para que los campos magnéticos se sumen las espiras deberán estar muy próximas unas a otras, por lo que es obligado bañar al conductor utilizado en un barniz aislante para evitar cortocircuitos cuando las espiras se toquen entre sí.

Cuando circula una corriente eléctrica por él, un solenoide se comporta exactamente igual que un imán. Su campo magnético es idéntico al creado por un imán permanente por lo que obtenemos un polo Norte y un polo Sur, lo mismo que con un imán de hierro, acero o magnetita.

Mediante otra sencilla regla, podemos determinar cual es el polo Norte y cual el polo Sur de nuestro solenoide. Para ello recurriremos de nuevo a nuestra mano izquierda. La regla, en esta ocasión, dice lo siguiente:

Si colocamos los dedos de nuestra mano izquierda sobre un solenoide de manera que señalen la dirección que sigue la corriente que circula por él, nuestro dedo pulgar extendido nos señalará el Norte del campo magnético producido

De nuevo te remitimos a la ilustración adjunta para que veas con claridad el significado del enunciado anterior.

Hasta aquí el primer artículo dedicado al electromagnetismo. En el próximo artículo continuaremos hablando de la inducción y autoinducción magnética y electromagnética, técnicas muy utilizadas en radio, además de otras cosas muy interesantes que no te deberías perder. Hasta entonces, nos vemos pronto.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.