Acceso



Registro de usuarios
Contáctenos
Teoría
El magnetismo - Imanes

Todos sabemos lo que es un imán (no me refiero a ese señor que dirige la oración en el Islam). Está claro que el ser humano llegó a conocer el magnetismo gracias a los imanes, sin los cuales no sabemos en que estado estarian hoy en dia las cosas. Pero a pesar de que los imanes sean objetos tan conocidos por la mayoría podemos decir que también son grandes desconocidos... ¿que porqué?... pues porque conocemos de sobra los efectos que pueden llegar a producir y sin embargo no sabemos prácticamente nada de la causa por la que ocurren. Es decir, todos sabemos que un imán atrae a otros cuerpos metálicos de hierro y acero pero son pocos los que saben "como rayos lo hace". ¿Cual es la fuente de esa atracción tan llamativa?.

Imagina que eres el padre de Pedrito. Pedrito es un niño muy listo que un buen dia conoce la existencia de los imanes. Como Pedrito tiene muchas inquietudes comienza a investigar y en medio de esas investigaciones te asalta cuando llegas del trabajo y te pregunta... ¡¡Papi, papi...!! ¿Porqué los imanes se pegan al hierro?. Entonces tu vas y le respondes al niño... ¡Porque son magnéticos!. El niño no entiende nada y entonces pregunta otra vez... ¿Y que significa ser magnético?... Te quedas algo confuso con la pregunta pero respondes... ¡¡Pues que tienen magnetita!!. El niño te mira con algo de recelo, y un poco mosca de nuevo te pregunta... ¿Y porqué la magnetita se pega al hierro?. Tu ya casi no sabes que responder y le dices... ¡Por la fuerza magnética que tiene!. El niño, muy serio, se queda ahora mirándote sin parpadear, como si se oliera que no tienes ni idea, y te hace la pregunta definitiva... ¿Y como funciona esa fuerza magnética para hacer que el imán se quede pegado al hierro?... Mejor que leas este artículo antes de seguir contestándole al niño.

Leer más...
Otros Temas Interesantes
Noticias
Recetario del reparador de radios a válvulas

Ebook en el que se detallan las 444 averías más habituales que se producen en los receptores de radio a válvulas.

Es una excelente información que te puede interesar tanto si eres restaurador de equipos de radio antiguos como si eres técnico en electrónica y no tienes mucha experiencia en la reparación de aparatos que incorporan estos antiguos componentes electrónicos.

Clica en "Leer completo..." para saber más de este ebook.

Leer más...
Radioaficionados
Preamplificador de micro para emisoras

De todos es sabido la cantidad de micrófonos preamplificados que invaden el mercado destinado a la C.B. (Banda Ciudadana o 27 MHz.). Unos los vemos en versión "de sobremesa" y otros en versión "de mano". Algunos de estos micrófonos dicen poseer un "compresor" para de esta manera conseguir una modulación profunda que permita obtener el máximo rendimiento de nuestra emisora. Otros publican su producto como provisto de un estupendo "limitador de audio" para así obtener el mismo o parecido resultado.

Sin embargo, son pocos los que saben que los compresores o limitadores de audio incorporados en los micrófonos son accesorios que aportan muy poco a la mejora del rendimiento de las emisoras de radioaficionado, sobre todo si se conectan a equipos de cierta calidad técnica como ocurre con la Superstar 3900. ¿Te sorprende esta afirmación? La pregunta ahora es... ¿Sabes por qué? Sigue leyendo este artículo y te enterarás no solo de la respuesta a esta pregunta, sino también de como hacer un preamplificador de audio para micrófono verdaderamente eficaz, diseñado con solo un par de transistores y sin embargo dotado de unas características excepcionales, y como incorporárselo a tu emisora de manera que le subas el rendimiento hasta el máximo posible.

Leer más...
Miscelanea
Sencillo VU-Meter a diodos LED

Lejos quedan aquellos tiempos en los que todos los medidores, y al decir todos me refiero a TODOS, estaban construidos mediante un galvanómetro y la lectura se realizaba con una aguja que parecía deslizarse al recorrer una escala graduada.

A decir verdad, para aquellos que en cierta manera somos de "la vieja escuela", los referidos medidores, midieran lo que midieran, tenían un encanto muy especial y podría decirse que sentimos "morriña" cuando los recordamos, como diría un gallego al estar lejos de su tierra y escuchar el sonido de una gaita.

Pero llegaron los diodos LED y se hizo la luz. Desde entonces, son muchos y muy variados los VU-Meters, vúmetros o medidores de unidades "VU" (del inglés Volume Unit) que se han desarrollado incorporando este componente electrónico, sobre todo usando la tecnología de la integración.

Pero en este artículo no vamos a publicar la información técnica para construir uno de estos instrumentos con los clásicos circuitos integrados UAA170 o UAA180 ni con cualquier otro. Tampoco vamos a enseñarte a conectar esas "barritas" LED con diferentes diseños. ¡Con ellas practicamente lo tienes todo hecho!.

En este artículo vamos a enseñarte como construir un VU-Meter LED con componentes discretos. ¡Dale ya al "Leer completo..." para saber más!.

Leer más...
Práctica
El teléfono yogur y su versión electrónica

Es muy probable que cuando éramos niños hayamos jugado alguna que otra vez con el llamado "teléfono yogur", probablemente fabricado por nosotros mismos ya que su construcción no ofrece prácticamente ninguna dificultad.

Con solo un par de recipientes de plástico vacíos, que casi siempre se conseguían una vez que habíamos consumido los yogures (de ahí el nombre por el que se le conoce normalmente), unos metros de hilo suficientemente resistente y poco más, teníamos un juguete con el que pasábamos horas y horas de ocio y diversión.

Mientras uno de nosotros aproximaba el bote de yogur a su oreja el otro lo hacía con el que le correspondía a su boca y comenzaba la "transmisión" del mensaje. Y aunque la distancia entre los dos interlocutores no podía exceder de algunos metros, la transmisión de la "fonía" que se conseguía con este artilugio, aunque débil, era relativamente buena.

La verdad es que aquellos eran otros tiempos. Nos divertíamos con cualquier cosa. Y aunque hoy este juguete quizás le siga llamando la atención a los más pequeños, no hay que olvidar que vivimos en la era de la electrónica y casi todos esperamos algo más. De ese "algo más" hablamos en este artículo. Vamos a presentarte la versión electrónica del teléfono yogur. ¿Quieres ver de que se trata?. ¡Adelante!.

Leer más...
Teoría
Electromagnetismo (II)

Existen personas con las cuales nos sentimos muy a gusto. Son capaces de transmitirnos penas y alegrias, transmitirnos la risa y las lágrimas, transmitirnos piedad, dolor, afecto, cariño, amistad y muchas otras cosas. En definitiva lo que verdaderamente ocurre con ellas es que tienen UN MAGNETISMO ESPECIAL que las hace únicas y por esa razón SON CAPACES DE TRANSMITIR Y CONTAGIARNOS ciertos sentimientos. ¿Has visto que hemos hablado de un determinado tipo de magnetismo (el personal), y que hemos hecho ver que gracias a él se pueden transmitir y se pueden contagiar algunos sentimientos? Está mas que demostrado que esto que hemos dicho es completamente cierto.

Las preguntas que cabe hacernos en conformidad con la exposición anterior es... ¿Será posible transmitir o contagiar el flujo magnético producido por un imán permanente, o el producido por un solenoide o bobina recorrida por una corriente eléctrica, a otro cuerpo al que expongamos a dicho flujo? ¿Que efectos pueden obtenerse al hacer esto en el cuerpo al que hemos transmitido el magnetismo? ¿Que aplicaciones prácticas podría tener la transmisión del flujo magnético? Esta y otras preguntas van a ser respondidas en este artículo.

Leer más...
Noticias
Curso de ELECTRÓNICA BÁSICA 02

PUBLICADO EL CAPÍTULO 2

Publicado el segundo capítulo de nuestro CURSO DE ELECTRÓNICA BÁSICA. Puedes visualizarlo en este mismo artículo.

Leer más...

El átomo - Electricidad estática

Mucho hemos oido sobre el átomo, pero quizás es poco lo que sabemos de él. El descubrimiento de la estructura del átomo puede considerarse una de las cosas mas extraordinarias de cuanto han conseguido los científicos de nuestro tiempo. En la filosofía de la antigua Grecia, la palabra "átomo" se empleaba para referirse a la parte de la materia más pequeña que se podía concebir. Esa "partícula fundamental" se consideraba indestructible. De hecho, el término átomo significa "no divisible" como ya hemos comentado en el artículo anterior. Con el desarrollo de la física nuclear, en el pasado siglo XX,  se comprobó que el átomo puede subdividirse en partículas más pequeñas.

El estudio básico del átomo es algo esencial para la comprensión posterior de toda la teoría electrónica. Sin entender "como funciona" (valga la expresión) un átomo, como interactuan unos átomos con otros, que fuerzas existen entre ellos y dentro de ellos, y en definitiva que es lo que pasa y por qué a esos niveles de la materia, sería imposible llegar a comprender el funcionamiento de los semiconductores o las válvulas de vacio (por ejemplo). ¿Te atreves a continuar?.

Un átomo está formado por un conjunto de partículas que se comportan exactamente igual que un sistema planetario, por ejemplo, el sistema solar. Sabemos que este último está formado por el Sol y varios planetas que giran sin cesar a su alrededor formando órbitas elípticas. En el átomo también encontramos un "sol" al que llamamos núcleo, alrededor del cual giran una serie de "planetas" a los que llamamos electrones. Los diferentes electrones no giran en la misma órbita sino que unos describen órbitas cercanas al núcleo y otros las describen mas lejanas. La velocidad a la que giran es de vértigo y además, las órbitas que describen no están siempre en un mismo plano, sino que cambiando constantemente de plano forman alrededor del núcleo una verdadera envoltura. Naturalmente, estos electrones, debido a la velocidad que llevan, tienden a abandonar sus respectivas órbitas, o dicho en lenguaje coloquial, a "salirse por la tangente". La pregunta es... ¿Por qué no lo hacen?.

Pues bién... ¿Recordamos la ley de atracción y repulsión de cargas eléctricas? Sabemos que dos cargas con diferente signo, una positiva y la otra negativa, se atraen. Si suponemos un cuerpo con carga negativa que gira vertiginosamente alrededor de otro que tiene carga positiva, en principio por la acción de la fuerza centrífuga el cuerpo que gira tiende a separarse del que permanece inmóvil. Pero si el giro se produce a una distancia idónea, esta fuerza centrífuga queda maravillosamente compensada por la fuerza de atracción de las cargas eléctricas.

Es precisamente esto lo que ocurre en el átomo, una compensación de fuerzas, ya que el núcleo tiene carga eléctrica positiva, mientras que los electrones la tienen negativa. En realidad el núcleo atómico posee dos tipos de corpúsculos o partículas atómicas: los protones, que tienen carga positiva, y los neutrones, que no tienen carga eléctrica alguna. Girando alrededor de dicho núcleo formado por protones (+) y neutrones encontramos a los electrones (-) con carga eléctrica negativa. Y ahora preste atención a lo que le vamos a decir:

En un átomo cualquiera el número de protones que contiene el núcleo debe ser exactamente igual que el número de electrones que giran a su alrededor.

De este modo el átomo queda estable y, en principio, perfectamente compensado. Recuerde que los protones (+) siempre tienen carga positiva y los electrones (-) siempre la tienen negativa.

Hagamos un resumen de lo visto hasta ahora: Los átomos que componen la materia están formados a su vez por partículas cargadas eléctricamente. Las cargas positivas están en el núcleo y la atracción que este núcleo ejerce sobre los electrones (cargas negativas) que giran a su alrededor evita que estos electrones escapen de su órbita. La atracción entre electrones y protones mantiene íntegra y estable la estructura atómica, compensando la fuerza centrífuga.

Ahora bién... ¿Que ocurriría si mediante la aplicación de un determinado tipo de energía damos a los electrones un impulso mayor del que tienen normalmente?... Entonces los electrones giran mas rápidamente, descompensamos las fuerzas y rompemos el equilibrio entre partículas. La fuerza centrífuga domina en este estado de cosas y tiende a separar a los electrones afectados de su núcleo. Casi siempre los electrones que sufren este proceso son los que están mas alejados del núcleo y por lo tanto menos sujetos a su fuerza de atracción. Estos electrones escapan de su órbita. Desde este preciso momento el átomo queda descompensado ya que tiene menos electrones de los que necesita su núcleo. Entonces se dice que el átomo está excitado. Un átomo excitado es aquel que por alguna causa externa a su estructura ha perdido electrones.

Cuando conseguimos en un cuerpo que un átomo pierda electrones, inmediatamente se crea un estado de verdadera excitación entre los demás átomos. ¿No sabe porqué?... Es fácil imaginar que los átomos excitados tienen necesidad de compensar su falta de electrones, por lo que los captan de los átomos que tienen mas próximos. Estos a su vez los captan de otros, estableciéndose una migración de electrones en el interior del cuerpo. Acabamos de crear lo que se llama estado eléctrico de un cuerpo. ¡Por fin ha aparecido lo que llamamos electricidad!.

La electricidad aparece cuando los electrones de las últimas órbitas de los átomos de un cuerpo escapan del poder de atracción de sus núcleos. En otras palabras: Cuando los electrones se desplazan aparece la electricidad. Grabe esto en su mente ya que es muy importante:

CUANDO LOS ELECTRONES SE DESPLAZAN APARECE LA ELECTRICIDAD

Fíjese que hemos dicho que la electricidad aparece cuando los electrones se desplazan. No hemos dicho absolutamente nada del desplazamiento de los protones porque estos permanecen inmóviles. Para llegar a comprender los fenómenos eléctricos es muy importante que parta de esta base:

El estado eléctrico de un cuerpo se presenta cuando existe una fuga de electrones (-), mientras que los protones (+) permanecen inmóviles en el núcleo, dispuestos a captar los electrones que se les pueda proporcionar.

ELECTRICIDAD ESTÁTICA
Ahora estamos preparados para poder comprender el experimento de Tales de Mileto que vimos en artículos anteriores. ¿Recordamos la barra de lacre que frotamos contra el trapo de lana? A este tipo de electricidad, producida por frotamiento, se le llama electricidad estática. Una cosa estática es aquella que no se mueve y en este tipo de electricidad, una vez que los electrones han pasado de un cuerpo a otro permanecen estáticos: ya no se mueven. Pero veamos con mas detenimiento que pasa con el lacre, el trapo de lana y los trocitos de corcho.

La lana es un material que, debido a su estructura atómica, cede electrones con mucha facilidad. El lacre, al contrario, puede captarlos en grandes cantidades. Al frotar un trapo de lana con una barra de lacre los átomos de la lana se desprenden de algunos de sus electrones que pasan a la barra de lacre. El lacre, por lo tanto, queda con mas electrones de los que sus átomos necesitan. Cuando ocurre que en un cuerpo hay un exceso de electrones, decimos que este cuerpo tiene carga eléctrica negativa.

Tenemos pués un cuerpo (el lacre) cargado negativamente al contener mas electrones de los que sus átomos necesitan. Si acercamos ahora el lacre a un cuerpo neutro (sin carga eléctrica) como un trocito de corcho, en seguida entra en acción la ley de atracción y repulsión de cargas. Los electrones del corcho mas cercanos al lacre se sienten repelidos por la carga del mismo signo (-) del lacre y por lo tanto se tienen que desplazar hacia la parte opuesta del corcho. Cuando esto sucede, la parte superior del corcho queda con defecto de electrones y prevalece la carga positiva de los protones de sus átomos. La parte superior del corcho, pues, ha quedado con carga positiva. Un cuerpo tiene carga eléctrica positiva cuando tiene defecto de electrones.

Una vez que los electrones de la parte superior del corcho se han desplazado hacia la parte inferior, tenemos dos cuerpos con cargas distintas: la carga negativa del lacre y la positiva del corcho. Por esta razón el corcho asciende hacia el lacre y se pega a él.

DESCARGA DE UN CUERPO
Para terminar, hablemos de las diferentes maneras que tienen los electrones de moverse de un cuerpo a otro. Comprender esto tiene una importancia capital para el estudio de la electrónica. Para que un cuerpo eléctricamente cargado se neutralice (a esto se le llama descargar un cuerpo) es necesaria la presencia de otro cuerpo con carga contraria al primero.

Hablamos de descarga por contacto, cuando ambos cuerpos se tocan. Entonces los electrones sobrantes del que tiene carga negativa pasan a los átomos del que tiene carga positiva. El mismo resultado obtenemos uniendo ambos cuerpos mediante un hilo metálico. Entonces hablamos de descarga mediante un conductor. Finalmente, si los cuerpos tienen una carga eléctrica muy elevada (el negativo tiene muchísimos electrones sobrantes y el positivo un gran defecto de ellos) la descarga se manifestará en forma de chispa, es decir, los electrones pasarán de un cuerpo a otro aún sin estar estos en contacto. Hablamos entonces de una descarga por arco, la cual puede realizarse a través del aire e incluso a través del vacío.

Recordemos que hemos hecho hincapié de forma reiterada en que solo los electrones pueden desplazarse de un cuerpo a otro. Tener en cuenta esto es de suma importancia para el estudio de la electrónica. Para hacerle ver este punto, aunque sea adelantándonos al artículo correspondiente, vamos a hablarle del funcionamiento de una válvula de radio (aún usadas hoy día en algunos equipos) y de un transistor. La válvula de radio basa su funcionamiento en que los electrones pueden pasar de un cuerpo a otro aún a través del vacío. Este dispositivo permite el paso de corriente eléctrica en una sola dirección y es capaz de controlar la intensidad de dicha corriente.

Lo mismo podemos decir del transistor, componente básico de todos los aparatos electrónicos de la actualidad (los circuitos integrados están formados por cientos, miles e incluso millones de transistores). Estos también permiten el paso en una sola dirección de la corriente eléctrica a través, no del vacío como en el caso de las válvulas, sino de materiales llamados semiconductores, controlando en todo momento su intensidad.

Como vemos, todo lo que estamos estudiando no es simple teoría mas o menos interesante. Estamos transmitiendote los conceptos básicos para que puedas comprender todo lo relacionado con la radio y la electrónica en general. Te animamos a seguir adelante pues ya estamos mas cerca de comprender como funciona la transmisión y recepción de señales de radio, e incluso fabricar un receptor de galena que funciona sin pilas ni corriente electrica. Solo necesita la señal que capta por su antena. ¿Te animas?... ¡Hasta pronto!.

 
C O M E N T A R I O S   
RE: El átomo - Electricidad estática

#4 Javier » 25-02-2012 00:56

Cito a juan francisco:
Cuando cada vez salgo del coche, me da una descarga electrica, saliendo un pequeño rayo de luz. Cuando estoy en el ordenador y toco cualquier cosa de metal me pasa lo mismo. Cuando toco el agua despues de salir del coche me da descarga electrica. Cuando toco a otra persona ambos recibidos una descarga. Me he puesto zapatos de piel, de cuero, de goma, y en todos me pasa lo mismo. Que puedo hacer gracias.


Te sobran electrones, Juan Francisco. ¿Has probado a trabajar de pila?

sara marin

#3 sara marin » 26-04-2011 21:29

me sirvio de mucho gracias
by:saarraa ok...!

electricidad estatica

#2 juan francisco » 05-03-2011 21:25

Cuando salgo del coche, o me levanto del ordenador, me dan descargas electricas, saliendo rayos de luz.

RE: El átomo - Electricidad estática

#1 juan francisco » 05-03-2011 21:24

Cuando cada vez salgo del coche, me da una descarga electrica, saliendo un pequeño rayo de luz. Cuando estoy en el ordenador y toco cualquier cosa de metal me pasa lo mismo. Cuando toco el agua despues de salir del coche me da descarga electrica. Cuando toco a otra persona ambos recibidos una descarga. Me he puesto zapatos de piel, de cuero, de goma, y en todos me pasa lo mismo. Que puedo hacer gracias.

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.