Acceso



Registro de usuarios
Contáctenos
Teoría
La resistencia eléctrica

Seguramente te habrás dado cuenta de que cada vez que hemos hablado de circulación de la corriente electrica hemos dicho que lo hace a través de un conductor o un hilo conductor. A nadie se le ocurriría hacer un circuito con hilo de nylon porque jamás conseguiría que la corriente eléctrica circulara a través de él. Al hablar de hilos conductores nos referimos a hilos o cables metálicos ya que son este tipo de materiales los que mejor conducen la corriente eléctrica. De hecho existen materiales que permiten el paso de la corriente a su través sin apenas ninguna dificultad. Estos materiales son los llamados CONDUCTORES y la plata se lleva la palma de todos ellos siendo el metal mejor conductor que existe.

Sin embargo, el metal conductor más utilizado en instalaciones eléctricas no es la plata, como cabe suponer debido a su alto precio, sino el cobre. Sin ser tan buen conductor como la plata, su precio mas bajo y su gran ductilidad (propiedad de poder deformarse de forma continuada sin romperse) que permite obtener hilos muy finos, hacen del cobre el conductor eléctrico por excelencia en la mayoria de las industrias. En este artículo vamos a hablar de los buenos y los malos conductores de la electricidad, pasando por los que están en la zona intermedia. ¿Nos sigues?.

Leer más...
Otros Temas Interesantes
Noticias
AFHA - Curso Electrónica, Radio y TV - Tomo 12

Tomo 12 del curso de Electrónica, Radio y Televisión de AFHA.

Leer más...
Radioaficionados
Sencillo receptor para Onda Corta (O.C.)

Es un verdadero placer comprobar como varios de los artículos más visitados del blog son los relativos a la construcción de receptores de radio.

Nuestra web cuenta con información para elaborar distintos tipos de receptores, todos ellos muy sencillos de llevar a cabo y en esto no pensamos cambiar por ahora.

Desde el tradicional "receptor de cristal" o "radio galena" hasta el "receptor a reacción", pasando por el "receptor reflex", todos ellos podéis encontrarlos aquí en el blog de Radioelectronica.es, en sus versiones "modernas" con transistores.

Hoy os proponemos algo que, sin ser muy distinto, si que es poco conocido. Se trata de un receptor de cristal que podríamos calificar como "amplificado", con una sensibilidad fuera de lo normal para estos dispositivos, pero además con escucha en altavoz y para las bandas de Onda Corta (OC). Descúbrelo clicando en "Leer completo...".

Leer más...
Miscelanea
Detector de OVNIS (UFO Detector)

A veces nos encontramos con circuitos que nos sorprenden por su simplicidad y por la efectividad con que realizan su trabajo. En este dia hemos querido publicar uno de estos montajes tan atractivos para muchos entusiastas de la electrónica y, al mismo tiempo, aficionados a la llamada "UFOLOGIA".

Presentamos en esta ocasión los detalles técnicos de un equipo de muy fácil construcción con el que podremos detectar en las inmediaciones la existencia de OVNIs (Objetos Volantes No Identificados), también llamados en inglés UFOs (Unidentified Flying Object).

Se ha demostrado que dichos objetos producen picos de energia electromagnética que pueden ser recibidos por circuitos amplificadores con entrada de alta impedancia. Es precisamente este tipo de circuito el que te proponemos como miscelánea y despedida del año 2015.

Los materiales usados para llevar a cabo este montaje son baratos y muy corrientes. Por lo tanto, te serán facilmente localizables en el mercado. ¿Te atreverás a detectar la presencia de OVNIS con él?.

Leer más...
Práctica
Monitor para fusible mejorado

En un artículo anterior de nuestro blog ya abordamos un montaje titulado "Indicador de fusible fundido" mediante el cual tuvimos la oportunidad de estudiar el multivibrador astable.

Posteriormente publicamos otro artículo titulado "Monitor para fusible", en el que presentábamos un circuito mucho más simple que el primero, que iluminaba un led cuando el fusible fundía.

Sin ánimo de ser insistente, os queremos presentar ahora este otro monitor algo más sofisticado que el segundo y menos complicado que el primero, mediante el cual podemos saber de un vistazo si nuestro aparato electrónico está recibiendo la alimentación adecuada, o por contra, está interrumpida por culpa de un fusible defectuoso.

En esta ocasión usaremos un doble diodo LED con cátodos comunes. El encendido del LED de color verde (¡PERFECTO!) nos indicará el funcionamiento correcto del dispositivo, mientras que si el LED que luce es el de color rojo (¡ALARMA!) querrá decir que el fusible está interrumpido.

Debido a la extremada sencillez del circuito creemos que merece la pena integrarlo en alguno de nuestros montajes, según consideremos o no la necesidad o conveniencia de que incorpore la mencionada indicación.

Clica en "Leer completo..." para ver más detalles.

Leer más...
Teoría
El puente de Wien (I)

El puente de Wien es un circuito electrónico compuesto por una combinación de resistencias y condensadores en serie-paralelo. Se utiliza generalmente en instrumentos de medida y generadores de señales de baja frecuencia para laboratorios y servicios de electrónica.

Cuando se implementa como oscilador, el puente de Wien puede generar frecuencias de entre 1 Hz a 1 MHz aproximadamente y entregar una forma de onda perfectamente senoidal.

Fue usado por uno de los fundadores de la firma Hewlett-Packard (William Hewlett) en la tesis final que elaboró para conseguir el máster en la Universidad de Stanford. Posteriormente, William Hewlett junto con David Packard fundaron la empresa "Hewlett-Packard" y el primer producto que comercializaron fue el generador de señales de B.F. de precisión modelo HP-200A, basado en el circuito al que nos referimos en este artículo, el cual se hizo muy popular por su baja distorsión.

¿Por qué queremos hablar del puente de Wien?. Por una sencilla razón. En nuestro próximo artículo de la sección de "Radioaficionados" publicaremos un montaje basado en este circuito, aunque no precisamente trabajando como oscilador.

Por el momento, vamos a ver de forma básica, con la menor cantidad de matemáticas posibles, y con palabras comprensibles por todos, como funciona y que se puede hacer con este artilugio electrónico estudiando su diseño y configuración.

Leer más...
Noticias
AFHA - Curso Electrónica, Radio y TV - Tomo 1

Tomo 1 del curso de Electrónica, Radio y Televisión de AFHA.

En este tomo se tratan los conocimientos básicos necesarios para la consecución exitosa del curso. La información que puede encontrarse en él es la siguiente: Teoría electrónica de la materia, tecnicas de soldadura, corriente eléctrica, fuerza electromotriz, diferencia de potencial, intensidad, resistencia, condensadores, electromagnetismo, inducción, ondas, resonancia, introducción a la radio, bloques de un receptor, montaje de un receptor a cristal (radio galena), etc...

Leer más...

El receptor elemental (VIII)

Llegamos a uno de los artículos más interesantes de los dedicados al receptor elemental. Por fin vamos a ver trasladados a la práctica todos los conocimientos adquiridos en los capítulos anteriores.

En este artículo vamos a colocar el circuito resonante paralelo estudiado anteriormente en el sitio que le corresponde dentro del receptor de radio que estamos estudiando.

Entenderemos perfectamente que ocurre para que nuestro receptor elemental "elija" solo una de las señales que capte la antena y rechaze el resto, y por lo tanto le dotemos de la necesaria "selectividad", que es una de las cualidades que distingue a los buenos receptores de los no tan buenos.

Además, veremos también de pasada y por el momento a un nivel muy básico, el concepto de "amplificación" del que hablamos en el artículo sobre "la telegrafía sin hilos y la radio" ¿lo recuerdas?. Se trataba de conseguir aumentar la amplitud de las señales de las emisoras más débiles para que puedan llegar a oirse con claridad, y con mas fuerza, en el auricular de nuestro receptor. ¿Que sistema podríamos utilizar para conseguir esto? ¿Se te ocurre alguno a tí?. Sigue leyendo y te enterarás cual es el que vamos a usar nosotros.

Lo primero que vamos a hacer es colocar el circuito resonante en el sitio más lógico y a la vez estratégico del receptor; lo ubicaremos justo entre el sistema antena-tierra. Pero antes de verlo, comprobemos como nuestro circuito resonante es capaz de "distinguir" las señales de diferentes frecuencias. Volvamos al circuito que utilizamos en el experimento del artículo anterior.

Vamos a dibujar los gráficos correspondientes a tres diferentes posiciones del condensador variable, los cuales obtendremos como hicimos anteriormente "barriendo" con el oscilador las frecuencias correspondientes a la gama de Ondas Medias. Esto lo haremos una vez por cada una de las posiciones del condensador variable. Mediremos la intensidad de corriente en cada momento, de donde podremos deducir la frecuencia de resonancia para esa posición del condensador y la resistencia que opone el circuito al paso de la señal para cada frecuencia representada.

Comencemos con una posición cerrada del condensador en la que las placas móviles se encuentran casi introducidas a tope, y por lo tanto enfrentadas a las fijas casi con toda su superficie. En esta posición, el condensador posee una capacidad alta. Observamos que la frecuencia de resonancia del circuito es casi la más baja posible, rondando los 700 KHz.

Seguidamente vamos a colocar las placas móviles del condensador en una posición media, es decir, aproximadamente una mitad dentro y la otra mitad afuera. Ahora el condensador tiene una capacidad intermedia, más o menos la mitad de su valor máximo. Vemos como al disminuir la capacidad del condensador, la frecuencia de resonancia del circuito ha subido bastante y ahora se ha colocado en unos 1000 KHz.

Por último, vamos a colocar las placas móviles del condensador casi afuera del todo de manera que tengan muy poca superficie enfrentada con las placas fijas. Ahora el condensador tiene una capacidad muy baja, casi la mínima que con él se puede obtener. En este estado de cosas la frecuencia de resonancia del circuito ha subido a 1400 KHz, ya que el condensador variable ha bajado su capacidad.

Vemos por lo tanto que manteniendo la misma bobina, para una menor capacidad del condensador variable obtenemos una frecuencia de resonancia más alta. De esta manera podemos recorrer la banda completa de Ondas Medias y ajustar la frecuencia de resonancia de nuestro circuito a voluntad, o dicho de otro modo, podemos elegir la frecuencia de la señal para la cual el circuito resonante ofrece una resistencia mayor. No se si te has dado cuenta de la importancia que tiene esto. Creo que será mejor que lo veas con tus propios ojos.

Antes hemos dicho que vamos a colocar el circuito resonante entre el sistema antena-tierra, es decir, vamos a intercalarlo entre la toma de antena y la toma de tierra. Si observas un momento el dibujo lo entenderás enseguida. Una vez que has mirado la ilustración... ¿Has captado la idea de la utilidad del circuito resonante?. ¿Aún no?. Vamos a explicártelo paso a paso.

Si te fijas en la siguiente imagen verás como las señales cuya frecuencia no corresponden a la de resonancia del circuito LC son derivadas a tierra, ya que el circuito resonante no les ofrece apenas resistencia.

Sin embargo, al encontrarse con una señal cuya frecuencia coincide con la de resonancia, el circuito LC ofrece una tremenda resistencia a su paso, por lo que dicha señal tiene un camino mucho más fácil de seguir a través del diodo detector, el auricular y finalmente el retorno a través de la toma de tierra. ¿Lo ves ahora?. ¡¡Claro que si!!.

Para poder oir nuestra emisora preferida solo tenemos que ajustar la frecuencia de resonancia del circuito LC a la frecuencia de transmisión de la emisora que queramos sintonizar. ¡¡Así de fácil!!.

Supongamos que queremos oir una emisora que transmite en 900 KHz. Ajustamos la frecuencia de resonancia del circuito LC justo a esa frecuencia y, debido a la alta resistencia ofrecida, esa señal no pasará directamente a tierra como hacen las demás, sino que antes pasa por el diodo detector y el auricular, camino de menor resistencia que el circuito resonante, de manera que primero el diodo la detecta y después el auricular la hace audible. Así hemos conseguido seleccionar solo una señal para detectarla y aplicarla al auricular y hemos desechado las demás.

Por fin hemos conseguido lo que nos proponíamos en un principio. Con esto hemos dotado a nuestro receptor de "selectividad" y ya no oiremos todas las señales juntas, como si fuera una jaula llena de grillos, sino solo aquella que nos interese. Pero aún nos queda hablar sobre el método que vamos a usar para amplificar la señal, de modo que podamos llegar a oir aquellas emisoras que lleguen a la antena con menos amplitud. ¿Como lo haremos?.

Para que en principio tengamos claro de lo que estamos hablando, diremos que la función del amplificador es obtener a su salida una señal idéntica a la que apliquemos a su entrada, pero con una amplitud mayor. ¿Os acordáis del transformador? Pues vamos a hacer que la bobina del circuito resonante, a la que llamaremos "bobina de sintonía", forme parte de un pequeño "transformador" (concretamente hará las veces de secundario) de manera que obtengamos cierto aumento de la tensión con respecto al primario, el cual tendrá muy pocas espiras comparado con la bobina del circuito resonante.

De este modo ejecutaremos una transformación gracias a la cual obtendremos una tensión superior en la bobina de sintonía (secundario), es decir, habremos "amplificado" la señal de antena. Si por ejemplo hacemos que la bobina del circuito resonante (el secundario del transformador) tenga cuatro veces más espiras que la otra, a la que denominaremos "bobina de antena" (que hace las veces de primario), resulta que la tensión en el circuito LC será cuatro veces superior que la que aparece en el primario (bobina de antena).

En realidad no es posible aumentar de forma indefinida y desmesuradamente la relación de espiras del secundario con respecto al primario pensando en obtener con ello una amplificación mucho mayor, ya que esto no da buenos resultados. Existe una relación de espiras ideal para cada circuito, relación con la que se obtiene el mejor rendimiento. De un lado, no podemos hacer que las espiras del primario sean muy escasas, ya que el efecto de inducción en el secundario sería mínimo y perderíamos efectividad. Por otra parte, si fabricamos el secundario con muchas espiras aumentaríamos su "capacidad parásita" lo que tendría un efecto muy negativo al tratar de sintonizar frecuencias elevadas. Veamos superficialmente que es esto de la capacidad parásita.

La capacidad parásita de una bobina, o transformador, se crea porque cada una de sus espiras actúa a modo de pequeño condensador con la espira vecina. Cuantas más espiras tenga una bobina más alta será su capacidad parásita. En nuestro caso, esto tiene como consecuencia el que dicha capacidad superflua se sume a la que tiene el condensador variable de sintonía. Cuando este condensador está totalmente abierto y su capacidad es muy pequeña es cuando la capacidad parásita de la bobina hace de las suyas, aumentando considerablemente la capacidad mínima del condensador variable conectado a ella e impidiendo que el dircuito LC pueda sintonizar frecuencias altas, ya que como hemos visto anteriormente, para una mayor capacidad del condensador del circuito LC obtenemos una frecuencia de resonancia menor.

Sin embargo con una relación de espiras adecuada si que vamos a conseguir aumentar la tensión de la señal lo suficiente, manteniendo a raya a la capacidad parásita, y junto con la amplificación vamos a obtener una buena adaptación de impedancias, lo que significará un mejor aprovechamiento de la señal captada por la antena.

Podemos decir que este transformador actúa o hace las veces de amplificador de tensión, y todo ello nos beneficiará tanto para obtener más sensibilidad como también más selectividad. Recordemos que la relación de espiras debe ser la justa para obtener el mayor rendimiento posible.

Como veremos más adelante, este tipo de transformador es muy usado en radio y recibe el nombre de "transformador de alta frecuencia" o abreviadamente "transformador de A.F.". El nucleo usado en estos transformadores no es de hierro, como ocurre con los de la red de corriente alterna de uso doméstico, sino que se usan otros materiales como la ferrita e incluso muchos de ellos carecen de él y entonces se dice que tienen el "nucleo de aire".

Es probable que te hayas dado cuenta de un componente dibujado en el esquema anterior del receptor, al que hemos llamado "condensador de filtro de B.F.", del que aún no hemos dicho nada. ¿Creías que se nos había pasado?... ¡Pués NO!. La pregunta que se impone es... ¿para que diablos sirve este condensador?.

¿Recuerdas cuando hablamos de la detección de la señal de R.F. y de como se aplicaba al auricular?. Allí vimos como la señal detectada no era una señal de baja frecuencia propiamente dicha, sino que se componía de una serie de impulsos de R.F. de diferentes amplitudes, acordes con las respectivas amplitudes del sonido original, que una vez aplicados al auricular este "traducía" a sonidos audibles.

Aunque aquello funcionaba bien, puede mejorarse bastante añadiendo el condensador de filtro de B.F. después del diodo detector. Este condensador "rellena" los espacios vacios entre impulsos y "restaura" la señal de baja frecuencia a su estado original. Además provee a los restos de la señal de R.F., presente en ese punto, de un camino fácil hacia el retorno de tierra.

Efectivamente, los restos de la señal de R.F., debido a su frecuencia extremadamente alta en comparación con la B.F., pasan con mucha facilidad a través de este condensador, mientras que para la señal de B.F., de frecuencia mucho más baja, este condensador presenta una resistencia tal que prácticamente es como si no existiera. Además, hay que tener en cuenta la elevada resistencia que opone a la R.F. la inductancia del propio auricular, por lo que el camino que sigue esta última es a través del condensador de filtro. Para la señal de B.F. la impedancia del auricular no es tan alta, y entonces pasa a través de él y no del condensador de filtro.

Mira la ilustración y observa como el condensador se carga con la tensión de pico del impulso anterior y luego se descarga durante el espacio en el que no existe señal, "rellenando" el espacio hasta llegar al siguiente impulso. De esta manera se consigue reproducir fielmente la señal original de baja frecuencia.

Quizás te parezca que hemos exagerado la descarga del condensador entre los picos ascendentes de la señal de R.F. del dibujo anterior. Lo que hemos pretendido hacer ha sido mostrarte como se realiza el proceso de transformación de la señal. En realidad, los picos de la señal de R.F. son tan numerosos, están tan juntos unos de otros y son tan similares en la amplitud del anterior con respecto al posterior, que la señal de B.F. que se obtiene después de ser sometida al filtrado del condensador es prácticamente idéntica a la señal original.

Para terminar vamos a decir unas palabras sobre un componente esencial en un receptor de radio moderno. Como bien sabrás, nuestro receptor elemental no usa ningún tipo de pilas ni de corriente eléctrica para funcionar, sino que utiliza solo la propia energía captada por la antena, por lo que no tiene sentido aquí hablar de las fuentes de alimentación. No obstante diremos que cuando un receptor contiene componentes activos, como transistores y/o circuitos integrados, entonces si que necesita la cooperación de algún tipo de energía eléctrica que alimente estos componentes.

En principio, en los receptores portátiles es de aplicación universal el uso de pilas. Sin embargo, en los receptores de sobremesa se necesita el concurso de una fuente de alimentación, la cual transforma la corriente alterna de la red de distribución eléctrica en corriente continua, apta para aplicarla a los circuitos del receptor.

En dicho componente, la corriente alterna se "rectifica" por medio de uno o mas diodos y, después de pasar por un proceso de filtro y en algunos casos también de estabilización, obtenemos a su salida una corriente continua prácticamente idéntica a la de una pila o batería. Pero ese tema lo dejaremos para un artículo posterior que promete ser muy interesante. Hasta pronto.

 
C O M E N T A R I O S   
Excelente

#2 Nahuel » 05-06-2017 00:12

Nunca había entendido por completo cómo realizaba su trabajo el circuito LC paralelo; consulté otras páginas, libros, apuntes pero ninguno fue tan claro como en éste artículo. Tal vez simplemente soy malo buscando información, pero de lo que estoy seguro es que la/s persona/s que hace/n posible el material de ésta página le ponen un empeño increíble. Muchas gracias :ppp: .

Bravo~

#1 replica borse » 09-04-2012 10:53

La operación es fácil de comprender.

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.