Acceso



Registro de usuarios
Otros Temas Interesantes
Contáctenos
Teoría
Las válvulas de vacío IV

Cuarto artículo de esta serie, en la que estamos haciendo una leve incursión en el mundo de las válvulas de vacío. En esta ocasión hablaremos sobre el triodo termoiónico, aunque como ya hemos dicho hasta la saciedad, sin apenas profundizar en su estudio por las razones ya comentadas.

Es interesante resaltar la importancia que adquirió la electrónica hace unos pocos años con la invención del triodo, no solo en lo que concierne a la emisión y recepción de señales electromagnéticas, sino a todo un abanico de aplicaciones que llegarían con el tiempo. Podría decirse con respecto a aquel acontecimiento histórico, que la electrónica es una ciencia que vió la luz con dicho descubrimiento.

Particularmente en lo que toca a la radio, con solo una válvula triodo podía conseguirse fabricar un receptor con una sensibilidad extraordinaria para su época, con el que a la sazón, los radioaficionados de entonces disfrutaron como cosacos, aunque a decir verdad, su selectividad no era muy encomiable.

Se trata del llamado "receptor a reacción", mejorado posteriormente para la gama de VHF con el circuito "super-regenerativo" o de "super-reacción", ambos inventados por el ingeniero norteamericano Edwin Howard Armstrong.

De todo ello, y mucho más, hablaremos a continuación. ¿Te apuntas?.

Leer más...
Noticias
Videotutorial sobre circuitos serie y paralelo

Subido nuestro primer videotutorial técnico a la zona de descargas.

Se trata de un video, de más de 20 minutos de duración y en alta calidad, que sirve de apoyo al artículo publicado el 9 de enero sobre los circuitos en serie y en paralelo.

Especialmente enfocado hacia el montaje y cálculo de resistencias en serie y en paralelo, este videotutorial servirá de ayuda a los que hayais leído el artículo anterior y os quede aún alguna duda al respecto en la mente.

Estamos seguros de que, una vez que lo veáis, este vídeo va a arrojar luz sobre aquellos puntos que antes no teníais claros con solo la lectura del artículo del blog.

Se ha procurado usar un lenguaje sencillo y fácil de entender para así poder llegar al mayor número de personas posible, de manera que su dificultad sea mínima.

Leer más...
Radioaficionados
Receptor a reacción para Onda Corta (II)

Continuamos con la segunda parte de este interesante tema que trata de la construcción de un sensible receptor regenerativo con escucha en altavoz, constituido por solo dos componentes activos; 1 transistor y 1 circuito integrado.

A pesar de incorporar tan pocos componentes estamos seguros que, aquellos que se aventuren a construirlo, obtendrán una tremenda satisfacción cuando al ponerlo en marcha puedan oir una gran cantidad de emisoras, incluyendo aquellas de paises muy alejados del nuestro.

Una vez que llevemos a la práctica este circuito, montando en su correspondiente placa de circuito impreso todos los componentes, podremos instalarlo en el interior de una caja a la que habremos añadido los controles necesarios para su uso y manejo en las mejores condiciones, e incluso fabricarle una bonita carátula, lo que le dará un excelente aspecto.

El circuito puede alimentarse con pilas corrientes ya que su consumo ciertamente es muy bajo. De esta manera tendremos la oportunidad de llevarlo con nosotros a cualquier parte y lo convertiremos en un equipo portable, aunque si pensamos usarlo únicamente en casa quizás sea mejor incorporarle una pequeña fuente de alimentación para conectarlo a la red de distribución eléctrica.

En el artículo anterior ya explicamos el principio de la "reacción" o "regeneración" de señales de alta frecuencia. No obstante, aún no hemos dicho nada sobre el funcionamiento detallado de nuestro receptor. Vayamos al grano entonces.

Leer más...
Miscelanea
La circunferencia, el círculo y el número PI (π)

La mayor parte de las personas que vivimos en paises desarrollados, quizás porque estamos acostumbrados a obtenerlo todo con suma facilidad y/o que las cosas vengan a nosotros como caídas del cielo, a menudo las damos por sentadas de manera automática.

Practicamente en ningún momento nos preguntamos porqué algo es o se produce de una determinada manera. Nos basta con saber que tal o cual cosa es como es y punto, lo aceptamos sin reservas.

Algo así nos ha ocurrido a muchos cuando asistíamos a la escuela, en épocas pasadas. ¿Recuerdas cuando aprendiste la fórmula para hallar la longitud de la circunferencia?. ¿O cuando te enseñaron la fórmula para calcular la superficie del círculo?. Todos las aceptamos sin pestañear, y pocos fuimos los que nos preguntamos de donde habia salido el famoso número PI (π). Muchos daban por sentado que aquello era así porque lo decía nuestro profesor de matemáticas y se acabó.

Pero en realidad, esas conocidas fórmulas han salido de algún sitio o, mejor dicho, han sido promulgadas por una o varias personas después de haber dedicado mucho tiempo y esfuerzo al estudio de estas figuras geométricas.

¿Te gustaría saber más sobre este tema y conocer como se han llegado a obtener las mencionadas fórmulas y como están relacionadas entre ellas?... ¡Pues clica en "Leer completo..." ya!.

Leer más...
Práctica
Soldador de temperatura controlada económico

Si es la primera vez que vas a comprarte un soldador es muy probable que te encuentres en una disyuntiva. En primer lugar, no tienes ni idea a que tipo de trabajos vas a enfrentarte y por ese motivo no te decides por una punta determinada.

Después está el tema de la potencia necesaria para el calentamiento: ¿Estarían bien 15W? ¿o quizás serían deseables 30W? ¿Prefieres a lo mejor un soldador de 60W para trabajos de cierta entidad?.

La evidente realidad es que el soldador tendría que elegirse en consonancia con el tipo de trabajo que uno vaya a realizar. Para soldaduras de componentes muy pequeños, delicados y los de tipo SMD es preferible un soldador de punta fina y de unos 15 watios. Sin embargo, si vas a usarlo para trabajos mas generales (componentes estandar, cables de conexión de cierto grosor, etc...) lo mejor sería acudir a uno de más potencia, como por ejemplo 30 watios.

Y si haces montajes que necesiten de alguna soldadura a masa localizada en la propia caja o chasis metálico del aparato que construyes, entonces lo mejor sería uno de 60 watios como poco y con un generoso tamaño de punta que permita el calentamiento de una zona amplia, de manera que esa soldadura no te salga "fria".

La pregunta que surge es: ¿no existe un soldador que permita la consecución óptima de la mayoría de los trabajos que un técnico electrónico realiza normalmente hoy dia?. La respuesta la tienes a continuación.

Leer más...
Teoría
El magnetismo - Imanes

Todos sabemos lo que es un imán (no me refiero a ese señor que dirige la oración en el Islam). Está claro que el ser humano llegó a conocer el magnetismo gracias a los imanes, sin los cuales no sabemos en que estado estarian hoy en dia las cosas. Pero a pesar de que los imanes sean objetos tan conocidos por la mayoría podemos decir que también son grandes desconocidos... ¿que porqué?... pues porque conocemos de sobra los efectos que pueden llegar a producir y sin embargo no sabemos prácticamente nada de la causa por la que ocurren. Es decir, todos sabemos que un imán atrae a otros cuerpos metálicos de hierro y acero pero son pocos los que saben "como rayos lo hace". ¿Cual es la fuente de esa atracción tan llamativa?.

Imagina que eres el padre de Pedrito. Pedrito es un niño muy listo que un buen dia conoce la existencia de los imanes. Como Pedrito tiene muchas inquietudes comienza a investigar y en medio de esas investigaciones te asalta cuando llegas del trabajo y te pregunta... ¡¡Papi, papi...!! ¿Porqué los imanes se pegan al hierro?. Entonces tu vas y le respondes al niño... ¡Porque son magnéticos!. El niño no entiende nada y entonces pregunta otra vez... ¿Y que significa ser magnético?... Te quedas algo confuso con la pregunta pero respondes... ¡¡Pues que tienen magnetita!!. El niño te mira con algo de recelo, y un poco mosca de nuevo te pregunta... ¿Y porqué la magnetita se pega al hierro?. Tu ya casi no sabes que responder y le dices... ¡Por la fuerza magnética que tiene!. El niño, muy serio, se queda ahora mirándote sin parpadear, como si se oliera que no tienes ni idea, y te hace la pregunta definitiva... ¿Y como funciona esa fuerza magnética para hacer que el imán se quede pegado al hierro?... Mejor que leas este artículo antes de seguir contestándole al niño.

Leer más...
Noticias
AFHA - Curso Electrónica, Radio y TV - Tomo 12

Tomo 12 del curso de Electrónica, Radio y Televisión de AFHA.

Leer más...

El receptor elemental (VIII)

Llegamos a uno de los artículos más interesantes de los dedicados al receptor elemental. Por fin vamos a ver trasladados a la práctica todos los conocimientos adquiridos en los capítulos anteriores.

En este artículo vamos a colocar el circuito resonante paralelo estudiado anteriormente en el sitio que le corresponde dentro del receptor de radio que estamos estudiando.

Entenderemos perfectamente que ocurre para que nuestro receptor elemental "elija" solo una de las señales que capte la antena y rechaze el resto, y por lo tanto le dotemos de la necesaria "selectividad", que es una de las cualidades que distingue a los buenos receptores de los no tan buenos.

Además, veremos también de pasada y por el momento a un nivel muy básico, el concepto de "amplificación" del que hablamos en el artículo sobre "la telegrafía sin hilos y la radio" ¿lo recuerdas?. Se trataba de conseguir aumentar la amplitud de las señales de las emisoras más débiles para que puedan llegar a oirse con claridad, y con mas fuerza, en el auricular de nuestro receptor. ¿Que sistema podríamos utilizar para conseguir esto? ¿Se te ocurre alguno a tí?. Sigue leyendo y te enterarás cual es el que vamos a usar nosotros.

Lo primero que vamos a hacer es colocar el circuito resonante en el sitio más lógico y a la vez estratégico del receptor; lo ubicaremos justo entre el sistema antena-tierra. Pero antes de verlo, comprobemos como nuestro circuito resonante es capaz de "distinguir" las señales de diferentes frecuencias. Volvamos al circuito que utilizamos en el experimento del artículo anterior.

Vamos a dibujar los gráficos correspondientes a tres diferentes posiciones del condensador variable, los cuales obtendremos como hicimos anteriormente "barriendo" con el oscilador las frecuencias correspondientes a la gama de Ondas Medias. Esto lo haremos una vez por cada una de las posiciones del condensador variable. Mediremos la intensidad de corriente en cada momento, de donde podremos deducir la frecuencia de resonancia para esa posición del condensador y la resistencia que opone el circuito al paso de la señal para cada frecuencia representada.

Comencemos con una posición cerrada del condensador en la que las placas móviles se encuentran casi introducidas a tope, y por lo tanto enfrentadas a las fijas casi con toda su superficie. En esta posición, el condensador posee una capacidad alta. Observamos que la frecuencia de resonancia del circuito es casi la más baja posible, rondando los 700 KHz.

Seguidamente vamos a colocar las placas móviles del condensador en una posición media, es decir, aproximadamente una mitad dentro y la otra mitad afuera. Ahora el condensador tiene una capacidad intermedia, más o menos la mitad de su valor máximo. Vemos como al disminuir la capacidad del condensador, la frecuencia de resonancia del circuito ha subido bastante y ahora se ha colocado en unos 1000 KHz.

Por último, vamos a colocar las placas móviles del condensador casi afuera del todo de manera que tengan muy poca superficie enfrentada con las placas fijas. Ahora el condensador tiene una capacidad muy baja, casi la mínima que con él se puede obtener. En este estado de cosas la frecuencia de resonancia del circuito ha subido a 1400 KHz, ya que el condensador variable ha bajado su capacidad.

Vemos por lo tanto que manteniendo la misma bobina, para una menor capacidad del condensador variable obtenemos una frecuencia de resonancia más alta. De esta manera podemos recorrer la banda completa de Ondas Medias y ajustar la frecuencia de resonancia de nuestro circuito a voluntad, o dicho de otro modo, podemos elegir la frecuencia de la señal para la cual el circuito resonante ofrece una resistencia mayor. No se si te has dado cuenta de la importancia que tiene esto. Creo que será mejor que lo veas con tus propios ojos.

Antes hemos dicho que vamos a colocar el circuito resonante entre el sistema antena-tierra, es decir, vamos a intercalarlo entre la toma de antena y la toma de tierra. Si observas un momento el dibujo lo entenderás enseguida. Una vez que has mirado la ilustración... ¿Has captado la idea de la utilidad del circuito resonante?. ¿Aún no?. Vamos a explicártelo paso a paso.

Si te fijas en la siguiente imagen verás como las señales cuya frecuencia no corresponden a la de resonancia del circuito LC son derivadas a tierra, ya que el circuito resonante no les ofrece apenas resistencia.

Sin embargo, al encontrarse con una señal cuya frecuencia coincide con la de resonancia, el circuito LC ofrece una tremenda resistencia a su paso, por lo que dicha señal tiene un camino mucho más fácil de seguir a través del diodo detector, el auricular y finalmente el retorno a través de la toma de tierra. ¿Lo ves ahora?. ¡¡Claro que si!!.

Para poder oir nuestra emisora preferida solo tenemos que ajustar la frecuencia de resonancia del circuito LC a la frecuencia de transmisión de la emisora que queramos sintonizar. ¡¡Así de fácil!!.

Supongamos que queremos oir una emisora que transmite en 900 KHz. Ajustamos la frecuencia de resonancia del circuito LC justo a esa frecuencia y, debido a la alta resistencia ofrecida, esa señal no pasará directamente a tierra como hacen las demás, sino que antes pasa por el diodo detector y el auricular, camino de menor resistencia que el circuito resonante, de manera que primero el diodo la detecta y después el auricular la hace audible. Así hemos conseguido seleccionar solo una señal para detectarla y aplicarla al auricular y hemos desechado las demás.

Por fin hemos conseguido lo que nos proponíamos en un principio. Con esto hemos dotado a nuestro receptor de "selectividad" y ya no oiremos todas las señales juntas, como si fuera una jaula llena de grillos, sino solo aquella que nos interese. Pero aún nos queda hablar sobre el método que vamos a usar para amplificar la señal, de modo que podamos llegar a oir aquellas emisoras que lleguen a la antena con menos amplitud. ¿Como lo haremos?.

Para que en principio tengamos claro de lo que estamos hablando, diremos que la función del amplificador es obtener a su salida una señal idéntica a la que apliquemos a su entrada, pero con una amplitud mayor. ¿Os acordáis del transformador? Pues vamos a hacer que la bobina del circuito resonante, a la que llamaremos "bobina de sintonía", forme parte de un pequeño "transformador" (concretamente hará las veces de secundario) de manera que obtengamos cierto aumento de la tensión con respecto al primario, el cual tendrá muy pocas espiras comparado con la bobina del circuito resonante.

De este modo ejecutaremos una transformación gracias a la cual obtendremos una tensión superior en la bobina de sintonía (secundario), es decir, habremos "amplificado" la señal de antena. Si por ejemplo hacemos que la bobina del circuito resonante (el secundario del transformador) tenga cuatro veces más espiras que la otra, a la que denominaremos "bobina de antena" (que hace las veces de primario), resulta que la tensión en el circuito LC será cuatro veces superior que la que aparece en el primario (bobina de antena).

En realidad no es posible aumentar de forma indefinida y desmesuradamente la relación de espiras del secundario con respecto al primario pensando en obtener con ello una amplificación mucho mayor, ya que esto no da buenos resultados. Existe una relación de espiras ideal para cada circuito, relación con la que se obtiene el mejor rendimiento. De un lado, no podemos hacer que las espiras del primario sean muy escasas, ya que el efecto de inducción en el secundario sería mínimo y perderíamos efectividad. Por otra parte, si fabricamos el secundario con muchas espiras aumentaríamos su "capacidad parásita" lo que tendría un efecto muy negativo al tratar de sintonizar frecuencias elevadas. Veamos superficialmente que es esto de la capacidad parásita.

La capacidad parásita de una bobina, o transformador, se crea porque cada una de sus espiras actúa a modo de pequeño condensador con la espira vecina. Cuantas más espiras tenga una bobina más alta será su capacidad parásita. En nuestro caso, esto tiene como consecuencia el que dicha capacidad superflua se sume a la que tiene el condensador variable de sintonía. Cuando este condensador está totalmente abierto y su capacidad es muy pequeña es cuando la capacidad parásita de la bobina hace de las suyas, aumentando considerablemente la capacidad mínima del condensador variable conectado a ella e impidiendo que el dircuito LC pueda sintonizar frecuencias altas, ya que como hemos visto anteriormente, para una mayor capacidad del condensador del circuito LC obtenemos una frecuencia de resonancia menor.

Sin embargo con una relación de espiras adecuada si que vamos a conseguir aumentar la tensión de la señal lo suficiente, manteniendo a raya a la capacidad parásita, y junto con la amplificación vamos a obtener una buena adaptación de impedancias, lo que significará un mejor aprovechamiento de la señal captada por la antena.

Podemos decir que este transformador actúa o hace las veces de amplificador de tensión, y todo ello nos beneficiará tanto para obtener más sensibilidad como también más selectividad. Recordemos que la relación de espiras debe ser la justa para obtener el mayor rendimiento posible.

Como veremos más adelante, este tipo de transformador es muy usado en radio y recibe el nombre de "transformador de alta frecuencia" o abreviadamente "transformador de A.F.". El nucleo usado en estos transformadores no es de hierro, como ocurre con los de la red de corriente alterna de uso doméstico, sino que se usan otros materiales como la ferrita e incluso muchos de ellos carecen de él y entonces se dice que tienen el "nucleo de aire".

Es probable que te hayas dado cuenta de un componente dibujado en el esquema anterior del receptor, al que hemos llamado "condensador de filtro de B.F.", del que aún no hemos dicho nada. ¿Creías que se nos había pasado?... ¡Pués NO!. La pregunta que se impone es... ¿para que diablos sirve este condensador?.

¿Recuerdas cuando hablamos de la detección de la señal de R.F. y de como se aplicaba al auricular?. Allí vimos como la señal detectada no era una señal de baja frecuencia propiamente dicha, sino que se componía de una serie de impulsos de R.F. de diferentes amplitudes, acordes con las respectivas amplitudes del sonido original, que una vez aplicados al auricular este "traducía" a sonidos audibles.

Aunque aquello funcionaba bien, puede mejorarse bastante añadiendo el condensador de filtro de B.F. después del diodo detector. Este condensador "rellena" los espacios vacios entre impulsos y "restaura" la señal de baja frecuencia a su estado original. Además provee a los restos de la señal de R.F., presente en ese punto, de un camino fácil hacia el retorno de tierra.

Efectivamente, los restos de la señal de R.F., debido a su frecuencia extremadamente alta en comparación con la B.F., pasan con mucha facilidad a través de este condensador, mientras que para la señal de B.F., de frecuencia mucho más baja, este condensador presenta una resistencia tal que prácticamente es como si no existiera. Además, hay que tener en cuenta la elevada resistencia que opone a la R.F. la inductancia del propio auricular, por lo que el camino que sigue esta última es a través del condensador de filtro. Para la señal de B.F. la impedancia del auricular no es tan alta, y entonces pasa a través de él y no del condensador de filtro.

Mira la ilustración y observa como el condensador se carga con la tensión de pico del impulso anterior y luego se descarga durante el espacio en el que no existe señal, "rellenando" el espacio hasta llegar al siguiente impulso. De esta manera se consigue reproducir fielmente la señal original de baja frecuencia.

Quizás te parezca que hemos exagerado la descarga del condensador entre los picos ascendentes de la señal de R.F. del dibujo anterior. Lo que hemos pretendido hacer ha sido mostrarte como se realiza el proceso de transformación de la señal. En realidad, los picos de la señal de R.F. son tan numerosos, están tan juntos unos de otros y son tan similares en la amplitud del anterior con respecto al posterior, que la señal de B.F. que se obtiene después de ser sometida al filtrado del condensador es prácticamente idéntica a la señal original.

Para terminar vamos a decir unas palabras sobre un componente esencial en un receptor de radio moderno. Como bien sabrás, nuestro receptor elemental no usa ningún tipo de pilas ni de corriente eléctrica para funcionar, sino que utiliza solo la propia energía captada por la antena, por lo que no tiene sentido aquí hablar de las fuentes de alimentación. No obstante diremos que cuando un receptor contiene componentes activos, como transistores y/o circuitos integrados, entonces si que necesita la cooperación de algún tipo de energía eléctrica que alimente estos componentes.

En principio, en los receptores portátiles es de aplicación universal el uso de pilas. Sin embargo, en los receptores de sobremesa se necesita el concurso de una fuente de alimentación, la cual transforma la corriente alterna de la red de distribución eléctrica en corriente continua, apta para aplicarla a los circuitos del receptor.

En dicho componente, la corriente alterna se "rectifica" por medio de uno o mas diodos y, después de pasar por un proceso de filtro y en algunos casos también de estabilización, obtenemos a su salida una corriente continua prácticamente idéntica a la de una pila o batería. Pero ese tema lo dejaremos para un artículo posterior que promete ser muy interesante. Hasta pronto.

 
C O M E N T A R I O S   
Excelente

#2 Nahuel » 05-06-2017 00:12

Nunca había entendido por completo cómo realizaba su trabajo el circuito LC paralelo; consulté otras páginas, libros, apuntes pero ninguno fue tan claro como en éste artículo. Tal vez simplemente soy malo buscando información, pero de lo que estoy seguro es que la/s persona/s que hace/n posible el material de ésta página le ponen un empeño increíble. Muchas gracias :ppp: .

Bravo~

#1 replica borse » 09-04-2012 10:53

La operación es fácil de comprender.

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +