Acceso



Registro de usuarios
Otros Temas Interesantes
Contáctenos
Teoría
Potencia y Energía

Como dijimos en el artículo anterior, el término potencia ya empezamos a relacionarlo con la electricidad y la electrónica. Nos resulta familiar porque lo hemos visto muchas veces cuando hemos leido algún manual sobre las caracteristicas de un equipo eléctrico o electrónico.

Para introducir otro concepto, el de energía, vamos a explicar que se entiende por potencia. Sin embargo en esta ocasión vamos a hacerlo desde un punto de vista aplicado a la mecánica y estableceremos una definición del término. De esta manera nos resultará fácil llegar hasta donde queremos... ¿Recuerdas que definimos la electricidad como una forma de energía? Pues esa es precisamente nuestra próxima meta, saber exactamente de que hablamos cuando lo hacemos de la energía eléctrica. Para ello vamos a empezar con un ejemplo muy simple. ¿Nos acompañas?.

Leer más...
Noticias
48 Lecciones de Radio (Jose Susmanscky) Tomo 1

Tomo 1 de esta vieja pero extraordinaria colección de información sobre radio.

Escrita con un lenguaje sencillo, a poco cuidado que se ponga en su lectura se adquirirán los conocimientos básicos necesarios para el estudio de la electrónica y la radio. Estos libros son un clásico que hay que tener y hay que leer. En este tomo se estudian temas como el magnetismo, condensadores, ley de Ohm, resistencias, corriente alterna, recepción de señales de radio, etc...

Leer más...
Radioaficionados
Como modificar un receptor de FM para oir la VHF

"¡Aaaaaaarrrrrrgggggg!... ¡Este niño es un manazas!... ¡Se ha cargado el receptor de radio que compré ayer!.. ¡El hijo de .... lo ha "fundido" al intentar modificarlo para escuchar a la N.A.S.A.! ¿Será penco el muy ca....?"

Estas fueron las "cariñosas palabras" que me dedicó mi padre cuando, con 7 años de edad, intenté "mejorar" (por llamarlo de alguna manera) el flamante receptor de OM y OC que acababa de comprar en una famosa tienda de electrónica de mi ciudad.

La verdad es que por aquel entonces yo no tenía ni la mas remota idea de lo que hacía, como es fácil deducir. Sin embargo, hacerlo me encantaba, me atraía enormemente.

No os voy a contar las medidas que tomó mi padre para que aquello no volviera a repetirse, aunque os las podéis imaginar. Sin embargo, por muy duras que fueran, no me quitaron las ganas de continuar con mis "experimentos".

Y hablando de este tipo de "investigaciones técnicas", en este artículo os ofrecemos la posibilidad de "continuar", de forma entretenida y a la vez instructiva y segura, con la que yo inicié en su dia cuando tenía 7 años de edad. Por supuesto, ya sin peligro alguno para el artilugio que elijamos como conejillo de indias y de manera muy sencilla.

Se trata de modificar un receptor de radio, de los que con seguridad todos tenemos alguno en casa, para poder oir la banda aérea (torres de control de aeropuertos, pilotos, etc...), radioaficionados de "dos metros" (144-146 MHz) y toda la banda de VHF hasta llegar incluso a los 170 MHz. ¿Quieres conocer todos los detalles?. Clic en "Leer completo...", por favor.

Leer más...
Miscelanea
Luneta térmica (antivaho) como antena AM-FM

Es probable que alguna vez te haya pasado lo que a mi.

Se activó la alarma del radio-reloj a las 8:00 de la mañana en punto. Todavía casi dormido me incorporé y corrí las cortinas oyendo las noticias en mi emisora favorita. Unos espléndidos rayos de sol penetraron de golpe en mi habitación y acabaron con la oscuridad que hasta entonces había en ella.

Acto seguido procedí al correspondiente aseo matutino para, justo después, sentarme a desayunar. El café estaba exquisito y la tostada, regada con aceite de oliva virgen extra, me supo a gloria bendita.

Aquel dia me levanté contento, muy contento. Tenía muy buenas espectativas. Como soy un enamorado de la radio, me gusta escuchar las tertulias matinales en el coche de camino al trabajo, lo primero que hago al subir al vehículo es conectarla.

He de aclarar que mi coche duerme en plena calle. No soy el afortunado conductor que dispone de garaje. ¡Que raro!... No logro sintonizar ninguna emisora... ¿Que está pasando?.

Paro el coche y me apeo para comprobar la antena... ¡LA ANTENA!... ¡Coñ.!... ¡Que me han robado la antena!.

Esto me estropeó completamente el dia. El cabreo que pillé fue monumental, de campeonato. Entonces tomé una decisión.

Para que esto no me ocurriera más, a partir de entonces decidí usar la luneta térmica, también conocida por el término "antivaho", como antena para mi receptor de radio AM/FM. Si alguien tenía la intención de dejarme sin escuchar la radio tendría que llevarse la luna trasera, y ya eso le iba a resultar más complicado que robar una simple antena... ¿no crees?.

Leer más...
Práctica
Soldador de temperatura controlada económico

Si es la primera vez que vas a comprarte un soldador es muy probable que te encuentres en una disyuntiva. En primer lugar, no tienes ni idea a que tipo de trabajos vas a enfrentarte y por ese motivo no te decides por una punta determinada.

Después está el tema de la potencia necesaria para el calentamiento: ¿Estarían bien 15W? ¿o quizás serían deseables 30W? ¿Prefieres a lo mejor un soldador de 60W para trabajos de cierta entidad?.

La evidente realidad es que el soldador tendría que elegirse en consonancia con el tipo de trabajo que uno vaya a realizar. Para soldaduras de componentes muy pequeños, delicados y los de tipo SMD es preferible un soldador de punta fina y de unos 15 watios. Sin embargo, si vas a usarlo para trabajos mas generales (componentes estandar, cables de conexión de cierto grosor, etc...) lo mejor sería acudir a uno de más potencia, como por ejemplo 30 watios.

Y si haces montajes que necesiten de alguna soldadura a masa localizada en la propia caja o chasis metálico del aparato que construyes, entonces lo mejor sería uno de 60 watios como poco y con un generoso tamaño de punta que permita el calentamiento de una zona amplia, de manera que esa soldadura no te salga "fria".

La pregunta que surge es: ¿no existe un soldador que permita la consecución óptima de la mayoría de los trabajos que un técnico electrónico realiza normalmente hoy dia?. La respuesta la tienes a continuación.

Leer más...
Teoría
Las ondas (I)

Por lo evidente, no nos extraña nada en absoluto la percepción que a diario tenemos en nuestros oidos de aquellos sonidos que se producen en algún punto más o menos alejado de nosotros. Si tenemos en cuenta que el espacio que nos rodea está lleno de aire, es fácil deducir que el sonido tiene la propiedad de desplazarse a través de dicho medio. Sin embargo, a pesar de que los sonidos producidos sean de una magnitud elevada, la distancia que pueden recorrer es relativamente escasa, a lo sumo de algunas centenas de metros, o, en el caso de los más estruendosos y atronadores, varios kilómetros de distancia.

Como vemos, la distancia que podemos alcanzar transmitiendo un sonido como tal es francamente corta y además depende excesivamente de las condiciones atmosféricas que nos rodeen en el momento de producirlo. Es más, si lo que nos interesa es hacer llegar lejos el habla de una persona, a cientos o a miles de kilómetros, lo tenemos muy difícil si pensamos transmitirla en su forma natural, es decir, como un sonido. Si queremos prolongar de forma considerable esta distancia deberemos hacerlo de otra manera. No obstante, para llegar a ese punto deberemos conocer primero que tenemos entre manos. ¿Qué es exactamente el sonido? ¿Como se produce? ¿Que son las ondas? ¿Existen diferentes tipos de ondas?. Si lees este artículo y los siguientes tus dudas desaparecerán.

Leer más...
Noticias
Base de datos de componentes para radio

Base de datos con más de 400 páginas de información sobre componentes electrónicos usados para emisión y recepción de radio. Transistores de potencia de RF, transistores RF de efecto de campo, transistores RF de pequeña señal, circuitos integrados (PLL, FI, VCO, MIXER, etc...), diodos varicap, etc...

Leer más...

El receptor elemental (VIII)

Llegamos a uno de los artículos más interesantes de los dedicados al receptor elemental. Por fin vamos a ver trasladados a la práctica todos los conocimientos adquiridos en los capítulos anteriores.

En este artículo vamos a colocar el circuito resonante paralelo estudiado anteriormente en el sitio que le corresponde dentro del receptor de radio que estamos estudiando.

Entenderemos perfectamente que ocurre para que nuestro receptor elemental "elija" solo una de las señales que capte la antena y rechaze el resto, y por lo tanto le dotemos de la necesaria "selectividad", que es una de las cualidades que distingue a los buenos receptores de los no tan buenos.

Además, veremos también de pasada y por el momento a un nivel muy básico, el concepto de "amplificación" del que hablamos en el artículo sobre "la telegrafía sin hilos y la radio" ¿lo recuerdas?. Se trataba de conseguir aumentar la amplitud de las señales de las emisoras más débiles para que puedan llegar a oirse con claridad, y con mas fuerza, en el auricular de nuestro receptor. ¿Que sistema podríamos utilizar para conseguir esto? ¿Se te ocurre alguno a tí?. Sigue leyendo y te enterarás cual es el que vamos a usar nosotros.

Lo primero que vamos a hacer es colocar el circuito resonante en el sitio más lógico y a la vez estratégico del receptor; lo ubicaremos justo entre el sistema antena-tierra. Pero antes de verlo, comprobemos como nuestro circuito resonante es capaz de "distinguir" las señales de diferentes frecuencias. Volvamos al circuito que utilizamos en el experimento del artículo anterior.

Vamos a dibujar los gráficos correspondientes a tres diferentes posiciones del condensador variable, los cuales obtendremos como hicimos anteriormente "barriendo" con el oscilador las frecuencias correspondientes a la gama de Ondas Medias. Esto lo haremos una vez por cada una de las posiciones del condensador variable. Mediremos la intensidad de corriente en cada momento, de donde podremos deducir la frecuencia de resonancia para esa posición del condensador y la resistencia que opone el circuito al paso de la señal para cada frecuencia representada.

Comencemos con una posición cerrada del condensador en la que las placas móviles se encuentran casi introducidas a tope, y por lo tanto enfrentadas a las fijas casi con toda su superficie. En esta posición, el condensador posee una capacidad alta. Observamos que la frecuencia de resonancia del circuito es casi la más baja posible, rondando los 700 KHz.

Seguidamente vamos a colocar las placas móviles del condensador en una posición media, es decir, aproximadamente una mitad dentro y la otra mitad afuera. Ahora el condensador tiene una capacidad intermedia, más o menos la mitad de su valor máximo. Vemos como al disminuir la capacidad del condensador, la frecuencia de resonancia del circuito ha subido bastante y ahora se ha colocado en unos 1000 KHz.

Por último, vamos a colocar las placas móviles del condensador casi afuera del todo de manera que tengan muy poca superficie enfrentada con las placas fijas. Ahora el condensador tiene una capacidad muy baja, casi la mínima que con él se puede obtener. En este estado de cosas la frecuencia de resonancia del circuito ha subido a 1400 KHz, ya que el condensador variable ha bajado su capacidad.

Vemos por lo tanto que manteniendo la misma bobina, para una menor capacidad del condensador variable obtenemos una frecuencia de resonancia más alta. De esta manera podemos recorrer la banda completa de Ondas Medias y ajustar la frecuencia de resonancia de nuestro circuito a voluntad, o dicho de otro modo, podemos elegir la frecuencia de la señal para la cual el circuito resonante ofrece una resistencia mayor. No se si te has dado cuenta de la importancia que tiene esto. Creo que será mejor que lo veas con tus propios ojos.

Antes hemos dicho que vamos a colocar el circuito resonante entre el sistema antena-tierra, es decir, vamos a intercalarlo entre la toma de antena y la toma de tierra. Si observas un momento el dibujo lo entenderás enseguida. Una vez que has mirado la ilustración... ¿Has captado la idea de la utilidad del circuito resonante?. ¿Aún no?. Vamos a explicártelo paso a paso.

Si te fijas en la siguiente imagen verás como las señales cuya frecuencia no corresponden a la de resonancia del circuito LC son derivadas a tierra, ya que el circuito resonante no les ofrece apenas resistencia.

Sin embargo, al encontrarse con una señal cuya frecuencia coincide con la de resonancia, el circuito LC ofrece una tremenda resistencia a su paso, por lo que dicha señal tiene un camino mucho más fácil de seguir a través del diodo detector, el auricular y finalmente el retorno a través de la toma de tierra. ¿Lo ves ahora?. ¡¡Claro que si!!.

Para poder oir nuestra emisora preferida solo tenemos que ajustar la frecuencia de resonancia del circuito LC a la frecuencia de transmisión de la emisora que queramos sintonizar. ¡¡Así de fácil!!.

Supongamos que queremos oir una emisora que transmite en 900 KHz. Ajustamos la frecuencia de resonancia del circuito LC justo a esa frecuencia y, debido a la alta resistencia ofrecida, esa señal no pasará directamente a tierra como hacen las demás, sino que antes pasa por el diodo detector y el auricular, camino de menor resistencia que el circuito resonante, de manera que primero el diodo la detecta y después el auricular la hace audible. Así hemos conseguido seleccionar solo una señal para detectarla y aplicarla al auricular y hemos desechado las demás.

Por fin hemos conseguido lo que nos proponíamos en un principio. Con esto hemos dotado a nuestro receptor de "selectividad" y ya no oiremos todas las señales juntas, como si fuera una jaula llena de grillos, sino solo aquella que nos interese. Pero aún nos queda hablar sobre el método que vamos a usar para amplificar la señal, de modo que podamos llegar a oir aquellas emisoras que lleguen a la antena con menos amplitud. ¿Como lo haremos?.

Para que en principio tengamos claro de lo que estamos hablando, diremos que la función del amplificador es obtener a su salida una señal idéntica a la que apliquemos a su entrada, pero con una amplitud mayor. ¿Os acordáis del transformador? Pues vamos a hacer que la bobina del circuito resonante, a la que llamaremos "bobina de sintonía", forme parte de un pequeño "transformador" (concretamente hará las veces de secundario) de manera que obtengamos cierto aumento de la tensión con respecto al primario, el cual tendrá muy pocas espiras comparado con la bobina del circuito resonante.

De este modo ejecutaremos una transformación gracias a la cual obtendremos una tensión superior en la bobina de sintonía (secundario), es decir, habremos "amplificado" la señal de antena. Si por ejemplo hacemos que la bobina del circuito resonante (el secundario del transformador) tenga cuatro veces más espiras que la otra, a la que denominaremos "bobina de antena" (que hace las veces de primario), resulta que la tensión en el circuito LC será cuatro veces superior que la que aparece en el primario (bobina de antena).

En realidad no es posible aumentar de forma indefinida y desmesuradamente la relación de espiras del secundario con respecto al primario pensando en obtener con ello una amplificación mucho mayor, ya que esto no da buenos resultados. Existe una relación de espiras ideal para cada circuito, relación con la que se obtiene el mejor rendimiento. De un lado, no podemos hacer que las espiras del primario sean muy escasas, ya que el efecto de inducción en el secundario sería mínimo y perderíamos efectividad. Por otra parte, si fabricamos el secundario con muchas espiras aumentaríamos su "capacidad parásita" lo que tendría un efecto muy negativo al tratar de sintonizar frecuencias elevadas. Veamos superficialmente que es esto de la capacidad parásita.

La capacidad parásita de una bobina, o transformador, se crea porque cada una de sus espiras actúa a modo de pequeño condensador con la espira vecina. Cuantas más espiras tenga una bobina más alta será su capacidad parásita. En nuestro caso, esto tiene como consecuencia el que dicha capacidad superflua se sume a la que tiene el condensador variable de sintonía. Cuando este condensador está totalmente abierto y su capacidad es muy pequeña es cuando la capacidad parásita de la bobina hace de las suyas, aumentando considerablemente la capacidad mínima del condensador variable conectado a ella e impidiendo que el dircuito LC pueda sintonizar frecuencias altas, ya que como hemos visto anteriormente, para una mayor capacidad del condensador del circuito LC obtenemos una frecuencia de resonancia menor.

Sin embargo con una relación de espiras adecuada si que vamos a conseguir aumentar la tensión de la señal lo suficiente, manteniendo a raya a la capacidad parásita, y junto con la amplificación vamos a obtener una buena adaptación de impedancias, lo que significará un mejor aprovechamiento de la señal captada por la antena.

Podemos decir que este transformador actúa o hace las veces de amplificador de tensión, y todo ello nos beneficiará tanto para obtener más sensibilidad como también más selectividad. Recordemos que la relación de espiras debe ser la justa para obtener el mayor rendimiento posible.

Como veremos más adelante, este tipo de transformador es muy usado en radio y recibe el nombre de "transformador de alta frecuencia" o abreviadamente "transformador de A.F.". El nucleo usado en estos transformadores no es de hierro, como ocurre con los de la red de corriente alterna de uso doméstico, sino que se usan otros materiales como la ferrita e incluso muchos de ellos carecen de él y entonces se dice que tienen el "nucleo de aire".

Es probable que te hayas dado cuenta de un componente dibujado en el esquema anterior del receptor, al que hemos llamado "condensador de filtro de B.F.", del que aún no hemos dicho nada. ¿Creías que se nos había pasado?... ¡Pués NO!. La pregunta que se impone es... ¿para que diablos sirve este condensador?.

¿Recuerdas cuando hablamos de la detección de la señal de R.F. y de como se aplicaba al auricular?. Allí vimos como la señal detectada no era una señal de baja frecuencia propiamente dicha, sino que se componía de una serie de impulsos de R.F. de diferentes amplitudes, acordes con las respectivas amplitudes del sonido original, que una vez aplicados al auricular este "traducía" a sonidos audibles.

Aunque aquello funcionaba bien, puede mejorarse bastante añadiendo el condensador de filtro de B.F. después del diodo detector. Este condensador "rellena" los espacios vacios entre impulsos y "restaura" la señal de baja frecuencia a su estado original. Además provee a los restos de la señal de R.F., presente en ese punto, de un camino fácil hacia el retorno de tierra.

Efectivamente, los restos de la señal de R.F., debido a su frecuencia extremadamente alta en comparación con la B.F., pasan con mucha facilidad a través de este condensador, mientras que para la señal de B.F., de frecuencia mucho más baja, este condensador presenta una resistencia tal que prácticamente es como si no existiera. Además, hay que tener en cuenta la elevada resistencia que opone a la R.F. la inductancia del propio auricular, por lo que el camino que sigue esta última es a través del condensador de filtro. Para la señal de B.F. la impedancia del auricular no es tan alta, y entonces pasa a través de él y no del condensador de filtro.

Mira la ilustración y observa como el condensador se carga con la tensión de pico del impulso anterior y luego se descarga durante el espacio en el que no existe señal, "rellenando" el espacio hasta llegar al siguiente impulso. De esta manera se consigue reproducir fielmente la señal original de baja frecuencia.

Quizás te parezca que hemos exagerado la descarga del condensador entre los picos ascendentes de la señal de R.F. del dibujo anterior. Lo que hemos pretendido hacer ha sido mostrarte como se realiza el proceso de transformación de la señal. En realidad, los picos de la señal de R.F. son tan numerosos, están tan juntos unos de otros y son tan similares en la amplitud del anterior con respecto al posterior, que la señal de B.F. que se obtiene después de ser sometida al filtrado del condensador es prácticamente idéntica a la señal original.

Para terminar vamos a decir unas palabras sobre un componente esencial en un receptor de radio moderno. Como bien sabrás, nuestro receptor elemental no usa ningún tipo de pilas ni de corriente eléctrica para funcionar, sino que utiliza solo la propia energía captada por la antena, por lo que no tiene sentido aquí hablar de las fuentes de alimentación. No obstante diremos que cuando un receptor contiene componentes activos, como transistores y/o circuitos integrados, entonces si que necesita la cooperación de algún tipo de energía eléctrica que alimente estos componentes.

En principio, en los receptores portátiles es de aplicación universal el uso de pilas. Sin embargo, en los receptores de sobremesa se necesita el concurso de una fuente de alimentación, la cual transforma la corriente alterna de la red de distribución eléctrica en corriente continua, apta para aplicarla a los circuitos del receptor.

En dicho componente, la corriente alterna se "rectifica" por medio de uno o mas diodos y, después de pasar por un proceso de filtro y en algunos casos también de estabilización, obtenemos a su salida una corriente continua prácticamente idéntica a la de una pila o batería. Pero ese tema lo dejaremos para un artículo posterior que promete ser muy interesante. Hasta pronto.

 
C O M E N T A R I O S   
Excelente

#2 Nahuel » 05-06-2017 00:12

Nunca había entendido por completo cómo realizaba su trabajo el circuito LC paralelo; consulté otras páginas, libros, apuntes pero ninguno fue tan claro como en éste artículo. Tal vez simplemente soy malo buscando información, pero de lo que estoy seguro es que la/s persona/s que hace/n posible el material de ésta página le ponen un empeño increíble. Muchas gracias :ppp: .

Bravo~

#1 replica borse » 09-04-2012 10:53

La operación es fácil de comprender.

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +