Acceso



Registro de usuarios
Contáctenos
Teoría
Las ondas (II)

Cuando hemos hablado del movimiento ondulatorio producido por la piedra que cae en el estanque de aguas tranquilas no hemos ahondado demasiado en su mecánica ni en sus peculiaridades. El estudio de tales ondas puede darnos muchas ideas y proporcionarnos algunos conocimientos relacionados con el resto de ondas, incluidas las ondas electromagnéticas utilizadas en las transmisiones de radio. Para un observador poco experimentado, las ondas producidas por la piedra al caer no son mas que unas pocas circunferencias que se dibujan en el agua y que se alejan del punto en donde cayó el pedrusco, aumentando progresivamente de diámetro y disminuyendo de intensidad. Sin embargo, hay mucha más información implícita en esas circunferencias de la que se ve a simple vista, solo que debemos conocer la manera de extraerla para así poder asimilarla.

Una vez dicho esto surgen algunas preguntas relacionadas con lo expuesto hasta el momento. ¿Que métodos podemos utilizar para conocer estas ondas mas a fondo? ¿Que podemos aprender de ellas que aplique también a los demás tipos de ondas? ¿Cuales son sus características principales? Todas las respuestas vienen a continuación.

Leer más...
Otros Temas Interesantes
Noticias
Liberado artículo del regulador PWR para SS3900

Comunicamos a todos nuestros visitantes que, debido a la gran cantidad de mensajes recibidos con preguntas acerca de nuestro artículo sobre la instalación de un regulador de potencia (PWR) AM-FM para la Superstar 3900, nuestra administración ha decidido hacer dicho artículo de libre descarga y distribución, por lo que los visitantes suscritos a nuestro blog pueden descargarlo de este link.

Esperamos que con esto podamos ayudar a muchas de aquellas personas que nos han pedido detalles sobre este tema.

Leer más...
Radioaficionados
Protección contra inversiones de polaridad

Una de las averías más comunes que nos podemos encontrar en las emisoras de radioaficionado es la inversión de polaridad. Dicha avería se produce al conectar el equipo inadvertidamente a la alimentación con las conexiones al revés, el cable de la entrada positiva (rojo) al electrodo negativo de la batería y el cable de la entrada negativa (negro) al electrodo positivo. Hay radioaficionados que, a pesar de las advertencias por parte del servicio técnico y para ahorrarse unos euros, conectan la emisora a una sola de las baterías (12V) de un vehículo dotado de dos unidades en serie (24V), en vez de utilizar la solución más apropiada que es un reductor de tensión de 24 a 12 voltios. Esto es una fuente constante de problemas tanto para la emisora como para las propias baterias del vehículo y puede propiciar una inversión de polaridad cuando alguien manipula dichas baterias sin desconectar previamente la emisora.

En este artículo vamos a estudiar los sistemas de protección contra inversiones de polaridad de que disponen tanto las emisoras de radioaficionado como muchos otros aparatos electrónicos, entre ellos los ordenadores portátiles por ejemplo, para evitar que el equipo en cuestión resulte dañado (o por lo menos reducir en lo posible el daño) ante un percance de este tipo, y su reparación práctica tomando como ejemplo una conocida emisora de radioaficionado averiada por esta causa. ¿Te interesa?.

Leer más...
Miscelanea
La circunferencia, el círculo y el número PI (π)

La mayor parte de las personas que vivimos en paises desarrollados, quizás porque estamos acostumbrados a obtenerlo todo con suma facilidad y/o que las cosas vengan a nosotros como caídas del cielo, a menudo las damos por sentadas de manera automática.

Practicamente en ningún momento nos preguntamos porqué algo es o se produce de una determinada manera. Nos basta con saber que tal o cual cosa es como es y punto, lo aceptamos sin reservas.

Algo así nos ha ocurrido a muchos cuando asistíamos a la escuela, en épocas pasadas. ¿Recuerdas cuando aprendiste la fórmula para hallar la longitud de la circunferencia?. ¿O cuando te enseñaron la fórmula para calcular la superficie del círculo?. Todos las aceptamos sin pestañear, y pocos fuimos los que nos preguntamos de donde habia salido el famoso número PI (π). Muchos daban por sentado que aquello era así porque lo decía nuestro profesor de matemáticas y se acabó.

Pero en realidad, esas conocidas fórmulas han salido de algún sitio o, mejor dicho, han sido promulgadas por una o varias personas después de haber dedicado mucho tiempo y esfuerzo al estudio de estas figuras geométricas.

¿Te gustaría saber más sobre este tema y conocer como se han llegado a obtener las mencionadas fórmulas y como están relacionadas entre ellas?... ¡Pues clica en "Leer completo..." ya!.

Leer más...
Práctica
Monitor para fusible mejorado

En un artículo anterior de nuestro blog ya abordamos un montaje titulado "Indicador de fusible fundido" mediante el cual tuvimos la oportunidad de estudiar el multivibrador astable.

Posteriormente publicamos otro artículo titulado "Monitor para fusible", en el que presentábamos un circuito mucho más simple que el primero, que iluminaba un led cuando el fusible fundía.

Sin ánimo de ser insistente, os queremos presentar ahora este otro monitor algo más sofisticado que el segundo y menos complicado que el primero, mediante el cual podemos saber de un vistazo si nuestro aparato electrónico está recibiendo la alimentación adecuada, o por contra, está interrumpida por culpa de un fusible defectuoso.

En esta ocasión usaremos un doble diodo LED con cátodos comunes. El encendido del LED de color verde (¡PERFECTO!) nos indicará el funcionamiento correcto del dispositivo, mientras que si el LED que luce es el de color rojo (¡ALARMA!) querrá decir que el fusible está interrumpido.

Debido a la extremada sencillez del circuito creemos que merece la pena integrarlo en alguno de nuestros montajes, según consideremos o no la necesidad o conveniencia de que incorpore la mencionada indicación.

Clica en "Leer completo..." para ver más detalles.

Leer más...
Teoría
Las válvulas de vacío VI

Bienvenidos al sexto artículo de esta serie dedicada a las válvulas de vacío. Vamos a ver a continuación un receptor que hizo furor hace años, cuando las válvulas termoiónicas estaban en su apogeo y los radioaficionados eran verdaderos "manitas", ávidos de experimentación y deseosos de construir con sus propias manos un receptor de radio.

Describiremos el circuito de un receptor que mejora sustancialmente las características del que estudiamos en el artículo anterior. Utilizaba una técnica llamada "detección por rejilla" y, a pesar de que usa prácticamente los mismos componentes que el "detector por placa" visto en el artículo precedente, el aumento de sensibilidad es considerable por lo que fué bastante usado en su época.

En el siguiente artículo estudiaremos el llamado "detector a reacción" con el que, solo a costa de cierta inestabilidad asumible y perfectamente controlable por el usuario, se obtenía una sensibilidad aún superior a la del detector por rejilla. Pero eso será después de conocer el funcionamiento del primero.

Clic en el botón "Leer completo..." para continuar.

Leer más...
Noticias
TEMPORIZADOR PARA VARIOS AÑOS

Como conectar un dispositivo hasta a varios años vista

Hoy queremos presentarte algo que se sale de lo normal, no solo por lo poco habitual que resulta encontrar algo así, sino también por la manera de conseguirlo.

Efectivamente, con el temporizador que te presentamos se puede hacer que un dispositivo se conecte a la red eléctrica hasta varios años después de haberse programado.

Y lo más sorprendente es que estos temporizadores pueden llevarse a cabo mediante simples relojes horarios de los usados normalmente para temporizar el encendido diario de luminosos, máquinas de café, etc... y sin ninguna complejidad, pues hasta un niño podría hacerlo.

No esperes más y clica en LEER COMPLETO...

Leer más...

El magnetismo - Imanes

Todos sabemos lo que es un imán (no me refiero a ese señor que dirige la oración en el Islam). Está claro que el ser humano llegó a conocer el magnetismo gracias a los imanes, sin los cuales no sabemos en que estado estarian hoy en dia las cosas. Pero a pesar de que los imanes sean objetos tan conocidos por la mayoría podemos decir que también son grandes desconocidos... ¿que porqué?... pues porque conocemos de sobra los efectos que pueden llegar a producir y sin embargo no sabemos prácticamente nada de la causa por la que ocurren. Es decir, todos sabemos que un imán atrae a otros cuerpos metálicos de hierro y acero pero son pocos los que saben "como rayos lo hace". ¿Cual es la fuente de esa atracción tan llamativa?.

Imagina que eres el padre de Pedrito. Pedrito es un niño muy listo que un buen dia conoce la existencia de los imanes. Como Pedrito tiene muchas inquietudes comienza a investigar y en medio de esas investigaciones te asalta cuando llegas del trabajo y te pregunta... ¡¡Papi, papi...!! ¿Porqué los imanes se pegan al hierro?. Entonces tu vas y le respondes al niño... ¡Porque son magnéticos!. El niño no entiende nada y entonces pregunta otra vez... ¿Y que significa ser magnético?... Te quedas algo confuso con la pregunta pero respondes... ¡¡Pues que tienen magnetita!!. El niño te mira con algo de recelo, y un poco mosca de nuevo te pregunta... ¿Y porqué la magnetita se pega al hierro?. Tu ya casi no sabes que responder y le dices... ¡Por la fuerza magnética que tiene!. El niño, muy serio, se queda ahora mirándote sin parpadear, como si se oliera que no tienes ni idea, y te hace la pregunta definitiva... ¿Y como funciona esa fuerza magnética para hacer que el imán se quede pegado al hierro?... Mejor que leas este artículo antes de seguir contestándole al niño.

La verdad es que resulta muy difícil explicar el magnetismo sin utilizar las matemáticas. Incluso utilizándolas, pasa que la naturaleza misma del fenómeno magnético resulta relativamente ambigüa e indeterminada. Los científicos no se ponen de acuerdo en cuanto a la verdadera naturaleza del magnetismo. No obstante, en este artículo vamos a intentar dar la explicación mas sencilla posible basándonos en la teoría promulgada por el físico alemán Wilhelm Eduard Weber, llamada "teoría de los imanes moleculares". Pero antes debemos hablar un poco sobre la historia y los efectos del magnetismo.

La definición de "magnetismo" podría ser "la propiedad de ciertas sustancias de atraer a los minerales de hierro y sus compuestos". Los primeros imanes que se descubrieron fueron los naturales, es decir, que se pueden encontrar con esa propiedad en la naturaleza. Un imán natural no es más que un trozo de mineral que manifiesta estas propiedades magnéticas y, por lo tanto, es capaz de atraer al hierro y sus compuestos. Los griegos descubrieron los imanes en la ciudad de Magnesia, en Asia Menor, en forma de una piedra capaz de atraer pequeños trozos de hierro. Se trataba de una piedra de magnetita, un mineral de hierro. El nombre de este mineral (magnetita) y del efecto que produce (magnetismo) proceden del nombre de la ciudad en la que fueron descubiertos. La magnetita es el único mineral que de forma natural presenta este poder de atracción sobre el hierro.

Sin embargo, las propiedades magnéticas pueden transmitirse de la magnetita a un trozo de hierro que antes no tenía propiedades magnéticas. Es decir, si ponemos un trozo de hierro que en principio no tiene propiedades magnéticas en contacto con un trozo de magnetita, al cabo de cierto tiempo el hierro habrá adquirido esas mismas propiedades de la magnetita. Si entonces separamos la magnetita del hierro este continuará reteniendo algo del magnetismo natural de la magnetita. A este magnetismo retenido por el hierro se le llama "magnetismo remanente". La magnetita ha influido sobre el hierro transmitiendole sus propiedades magnéticas naturales y ha convertido a este en un imán artificial.

La duración del magnetismo remanente en los imanes artificiales depende mucho del material empleado en los mismos. Es cierto que el hierro adquiere rápidamente propiedades magnéticas, sin embargo también es verdad que las pierde deprisa y corriendo, al poco tiempo de que el magnetismo inductor se separe de él (se les llama por eso IMANES TEMPORALES). Por contra el acero es bastante más dificil de imantar, tanto que se necesita un campo magnético considerable para influir en él de manera sensible. Sin embargo, una vez imantado el acero conserva por mucho mas tiempo el magnetismo remanente. El magnetismo remanente mejora considerablemente si se mezcla el hierro con carbono, wolframio o cobalto. A estos últimos se les conoce como IMANES PERMANENTES en contraste con los anteriores.

Suponiendo un imán en forma de barra, a sus extremos se les llama POLOS e igual que pasa con los polos terrestres reciben los nombres de polo NORTE y polo SUR. En sus polos es donde el imán concentra la mayoría de su fuerza magnética. Esta fuerza va decreciendo conforme nos vamos aproximando al centro y llega a desaparecer completamente en el punto medio de la barra. Este punto medio recibe el nombre de ZONA NEUTRA del imán. Esto es fácil de apreciar si cogemos el imán de barra, lo colocamos en una superficie completamente plana y le espolvoreamos un puñado de limaduras de hierro desde cierta altura. Observaremos que la mayoría de limaduras se adhieren a sus extremos y que paulatinamente van disminuyendo hacia el centro de la barra hasta llegar a desaparecer por completo en su punto medio, donde la fuerza del imán es nula. Esto nos da una idea de la extensión de lo que llamamos CAMPO MAGNÉTICO del imán, que no es ni mas ni menos que su zona de influencia. Este campo magnético está formado por lineas magnéticas; son las llamadas LINEAS DE FUERZA del imán.

Podemos "visualizar" las lineas de fuerza de un imán con ayuda de las limaduras de hierro. Si colocamos un imán bajo un papel o cartulina y espolvoreamos una fina capa de limaduras de hierro observaremos que, bajo la influencia del campo magnético del imán, las limaduras de hierro quedarán "ordenadas automáticamente" pudiendose ver una representación de las lineas de fuerza del imán y la dirección que toman las mismas.  Si hacemos el experimento con un imán de barra, las limaduras quedarán como indica el gráfico que incluimos. Por convenio a las lineas de fuerza de un imán se les ha asignado una dirección, y van por el exterior del imán del polo norte al polo sur y por el interior del polo sur al polo norte.

Bién sabido es que los polos iguales se repelen y los polos distintos se atraen (esto me recuerda que mi mujer y yo nos atraemos mucho, sin embargo entre mi suegra y yo existe "una rara fuerza" que impide que estemos cerca el uno del otro). Es decir, si enfrentamos los dos polos norte de dos imanes diferentes, estos se repelerán el uno al otro. Lo mismo ocurrirá si enfrentamos los dos polos sur. Sin embargo si los polos que enfrentamos son distintos, el norte de uno con el sur del otro, los imanes se atraerán entre si y llegarán a pegarse el uno contra el otro enérgicamente.

Hasta aquí no hemos aclarado mucho el porqué de la fuerza que un imán ejerce sobre el hierro. Como hemos dicho al principio, esto lo vamos a hacer utilizando la teoría de los imanes moleculares, también llamada "teoría de los dipolos magnéticos elementales", que el físico alemán Wilhelm Eduard Weber concibió sobre el año 1852. Se trata de una interesante conjetura que basa su razonamiento en la íntima relación que existe entre el magnetismo y la electricidad. Efectivamente, puede decirse que magnetismo y electricidad son dos aspectos diferentes de un mismo fenómeno físico llamado electromagnetismo.

LA TEORIA DE LOS IMANES MOLECULARES
Para comprender esta teoría primero debes saber una cosa fundamental: "La electricidad produce magnetismo y el magnetismo produce electricidad". Nos quedamos con la primera parte de nuestra afirmación:

LA ELECTRICIDAD PRODUCE MAGNETISMO

Para comprobarlo solo debemos hacer circular una corriente eléctrica por un conductor y aproximarle a este conductor una brújula. Al hacerlo, la aguja de la brújula se desvía. También podemos comprobar esto haciendo pasar perpendicularmente el conductor a través de una hoja de papel o cartón y esparciendo en su cara superior unas pocas limaduras de hierro. Al hacer pasar una corriente eléctrica a través del conductor las limaduras de hierro se agrupan alrededor del conductor formando lineas concéntricas. De manera que alrededor de un conductor por el que circula una corriente eléctrica se produce un campo magnético. ¿Que nos dice esto?.

Nos dice que cuando los electrones se mueven producen un campo magnético. ¿Y no es verdad que los electrones están en continuo movimiento alrededor de su núcleo?. Podría ser que este movimiento al que están expuestos continuamente los electrones fuese una fuente de magnetismo, aunque en principio y visto electrón por electrón este magnetismo sea completamente imperceptible. La teoría de Weber dice que un imán está formado por muchísimos "imanes moleculares" ordenados de forma que todos ellos están apuntando en la misma dirección sumando así sus fuerzas magnéticas respectivas y obteniendose en conjunto un imán mucho más potente. Para entenderlo mejor vamos a ir "marcha atrás".

Supongamos que tenemos una barra de hierro imantada con sus polos norte y sur perfectamente definidos. Si la partimos por la mitad ¿que obtenemos?. Pues obtenemos dos imanes con sus polos situados exactamente con la misma orientación que los tenía el imán original. Si ahora hacemos lo mismo con los dos imanes obtenidos de la división anterior, los cortamos por la mitad, nos encontraremos con cuatro imanes. Los polos de estos cuatro imanes también tendrán exactamente la misma orientación que los dos anteriores. Podemos continuar así y hacer la división cuantas veces queramos que en todas las ocasiones la orientación de los imanes obtenidos al dividir el anterior será idéntica a la del imán original. Pero estas divisiones no pueden prolongarse indefinidamente.

Llegará un momento en que nos encontraremos que hemos llegado al límite y ya no podremos seguir dividiendo puesto que lo que nos queda es UNA SOLA MOLÉCULA DEL MATERIAL IMANTADO. Ese sería el imán mas pequeño que se puede obtener, una sola molécula que seguirá teniendo sus polos norte y sur orientados de idéntica forma a como los tenía el imán original antes de comenzar nuestras divisiones. Según lo anterior, un imán debe tener TODAS sus moléculas orientadas en el mismo sentido y cada una de ellas se comporta como un imán microscópico con sus polos orientados en la misma dirección que los del imán del que forma parte. Después de saber esto comprendemos perfectamente la diferencia entre un cuerpo imantado y otro que no lo está; radica en la orientación de sus moléculas.

Podemos decir que las moléculas de un trozo de hierro o acero sin propiedades magnéticas originalmente tienen una estructura anárquica y desordenada, de modo que sus campos magnéticos se anulan mutuamente. Cuando el mismo trozo de hierro es expuesto a un campo magnético lo suficientemente fuerte, sus moléculas se ordenan y sus polos adquieren la misma orientación apareciendo entonces el campo magnético, suma del campo magnético de todos sus pequeños imanes moleculares. Este campo magnético volverá a desaparecer en el momento en que sus moléculas vuelvan al desorden y la anarquía. Esta es la diferencia entre los imanes temporales y los permanentes, la facilidad con que los primeros pierden su ordenación molecular.

EL PORQUÉ DEL NOMBRE DE LOS POLOS
En un párrafo anterior hemos indicado que a los polos de un imán se les llama norte y sur pero... ¿como podemos distinguir el uno del otro?. La respuesta está en la geografía terrestre. Si cogemos una brújula, el polo norte de su aguja (que es un imán permanente en toda regla) será el que señala al norte geográfico y el polo sur de dicha aguja el que señala al sur geográfico y esto siempre se ha hecho así por cuestiones relativas a la navegación, por lo que entendemos que esta ha sido la causa que ha dado nombre a los polos del imán. Hemos de saber que la brújula funciona porque la Tierra es un gran imán, un imán enorme que también tiene dos polos, el norte y el sur. Sin embargo aquí observamos lo que parece una contradicción. ¿Recordamos la regla de los polos?... polos distintos se atraen y polos iguales se repelen. ¿Porqué el polo norte del imán de la brújula señala también al polo norte de la Tierra y no a su polo sur como aparentemente debería de suceder?.

La explicación es bién sencilla: Los polos magnéticos de la Tierra están invertidos con respecto a sus polos geográficos. El polo norte geográfico de la Tierra corresponde a su polo sur magnético y viceversa. Mas exactamente, el polo sur magnético de la Tierra está algo desplazado con relación al norte geográfico, concretamente a unos 1600 kilómetros (ver dibujo adjunto). Lo mismo ocurre con el polo sur geográfico el cual está muy cercano al norte magnético pero no coincide exactamente con él. Por lo tanto, lo que realmente señala la aguja de la brújula son los polos magnéticos de la Tierra y no sus polos geográficos.

Dicho esto, para determinar cuales son los polos de un imán solo tenemos que suspenderlo de un hilo y marcar como su polo norte al que señala al norte geográfico de la Tierra y como polo sur al que señala al sur terrestre. Esto es así siempre que nuestro imán no se encuentre sometido a la acción de un tercer campo magnético que influya en su orientación.

Hasta aquí el artículo dedicado al magnetismo. Sin embargo, todavía queda mucha tela que cortar ya que solo hemos hecho una introducción a este fenómeno importantísimo para el estudio de la electrónica y la radio. En el próximo artículo teórico comenzaremos a hablar de otra vertiente del magnetismo. Nos referimos al ELECTROMAGNETISMO, gracias al cual podemos disfrutar hoy dia de los motores eléctricos, de los alternadores, de los instrumentos medidores de corriente analógicos, de los transformadores y autotransformadores, etc... Los radioaficionados pueden oir su emisora gracias al altavoz, pueden girar su antena directiva gracias al rotor, y pueden recibir y emitir señales de radio gracias a su antena y todo ello utiliza el electromagnetismo como base para su funcionamiento. Te esperamos, no faltes.

 
C O M E N T A R I O S   
Gracias

#11 Isabel » 15-11-2019 17:19

Me ha resultado muy interesante, muy completo y muy ameno. Estoy escribiendo un post sobre magnetismo para niños de primaria y tu información me viene genial, porque a mí me van más las letras :D. Por eso, necesitaba algo sencillo de entender y tu explicación es perfecta: accesible y clara :oks:
Muchas gracias. :tsbu:

RE: El magnetismo - Imanes

#10 paola » 09-02-2019 15:44

Pero que buena página!!! :vkg: :plup: :tsbu: :oks: :ppp:

RE: El magnetismo - Imanes

#9 liz » 09-11-2015 20:53

me en canto mesaque un 10 en la prueva :lol:

avi

#8 CHAMIN » 20-11-2013 05:11

:D MUY BUENA INFORMACION

:oooo: danhy

#7 Daniela » 28-05-2013 03:33

Buena informacion :oo: :D :-)

magnetismo

#6 lilian » 10-11-2012 15:19

:-) gracias muy buena informacion

graciasss

#5 LEO » 01-11-2012 18:49

muy buen trabajo!

nose

#4 juan antonio » 22-10-2012 23:06

a mi me ayudo sobre que es el magnetismo

RE: El magnetismo - Imanes

#3 cheli » 25-09-2011 20:51

:-) ola me gusto la info de aki

graxx

#2 ivette » 05-06-2011 23:31

m sivio d muxa ayuda st work... thank you very much

bueno

#1 fernando » 05-03-2011 16:05

me fue de mucha ayuda este articulo para mi tarea. gracias

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.