Acceso



Registro de usuarios
Otros Temas Interesantes
Contáctenos
Teoría
Las válvulas de vacío VI

Bienvenidos al sexto artículo de esta serie dedicada a las válvulas de vacío. Vamos a ver a continuación un receptor que hizo furor hace años, cuando las válvulas termoiónicas estaban en su apogeo y los radioaficionados eran verdaderos "manitas", ávidos de experimentación y deseosos de construir con sus propias manos un receptor de radio.

Describiremos el circuito de un receptor que mejora sustancialmente las características del que estudiamos en el artículo anterior. Utilizaba una técnica llamada "detección por rejilla" y, a pesar de que usa prácticamente los mismos componentes que el "detector por placa" visto en el artículo precedente, el aumento de sensibilidad es considerable por lo que fué bastante usado en su época.

En el siguiente artículo estudiaremos el llamado "detector a reacción" con el que, solo a costa de cierta inestabilidad asumible y perfectamente controlable por el usuario, se obtenía una sensibilidad aún superior a la del detector por rejilla. Pero eso será después de conocer el funcionamiento del primero.

Clic en el botón "Leer completo..." para continuar.

Leer más...
Noticias
Todos los conectores para informática

Base de datos informática con más de 1000 páginas de información sobre conectores, conexiones, adaptadores, circuitos, etc...

Leer más...
Radioaficionados
Como mejorar el receptor de galena

Como continuación al artículo relativo al receptor con diodo de cristal o radio galena, presentamos la siguiente información en la que explicamos como mejorar dicho receptor de radio. No en vano, las mejoras introducidas conseguirán un mayor rendimiento de sus características.

Comenzaremos con una pequeña modificación de nuestro receptor original, añadiendole un transistor para obtener una pequeña amplificación de señal.

Lo verdaderamente interesante, sin embargo, es que a pesar de usar un componente activo, en un principio seguiremos usando solo la energía recibida por la antena, es decir, no usaremos ninguna bateria, pila ni fuente de alimentación.

Posteriormente, en este mismo artículo, estudiaremos otros circuitos a los que iremos dotando de mayor amplificación y a los cuales añadiremos ya una pequeña pila, con lo que el rendimiento obtenido será mayor y tanto su sensibilidad como su selectividad se verán ostensiblemente incrementadas con respecto a las ofrecidas por receptores anteriores.

Si verdaderamente te interesa la radio no puedes dejar de leer este apasionante artículo.

Leer más...
Miscelanea
Luneta térmica (antivaho) como antena AM-FM

Es probable que alguna vez te haya pasado lo que a mi.

Se activó la alarma del radio-reloj a las 8:00 de la mañana en punto. Todavía casi dormido me incorporé y corrí las cortinas oyendo las noticias en mi emisora favorita. Unos espléndidos rayos de sol penetraron de golpe en mi habitación y acabaron con la oscuridad que hasta entonces había en ella.

Acto seguido procedí al correspondiente aseo matutino para, justo después, sentarme a desayunar. El café estaba exquisito y la tostada, regada con aceite de oliva virgen extra, me supo a gloria bendita.

Aquel dia me levanté contento, muy contento. Tenía muy buenas espectativas. Como soy un enamorado de la radio, me gusta escuchar las tertulias matinales en el coche de camino al trabajo, lo primero que hago al subir al vehículo es conectarla.

He de aclarar que mi coche duerme en plena calle. No soy el afortunado conductor que dispone de garaje. ¡Que raro!... No logro sintonizar ninguna emisora... ¿Que está pasando?.

Paro el coche y me apeo para comprobar la antena... ¡LA ANTENA!... ¡Coñ.!... ¡Que me han robado la antena!.

Esto me estropeó completamente el dia. El cabreo que pillé fue monumental, de campeonato. Entonces tomé una decisión.

Para que esto no me ocurriera más, a partir de entonces decidí usar la luneta térmica, también conocida por el término "antivaho", como antena para mi receptor de radio AM/FM. Si alguien tenía la intención de dejarme sin escuchar la radio tendría que llevarse la luna trasera, y ya eso le iba a resultar más complicado que robar una simple antena... ¿no crees?.

Leer más...
Práctica
La soldadura

"Teoría sin práctica es parálisis y práctica sin teoría es ceguera". Con la primera parte de esta frase, cuya autoría desconocemos, podemos resaltar la importancia de que cualquier cosa que estudiemos siempre vaya acompañada de ejercicios prácticos. De nada en absoluto nos sirve estudiar muy a fondo cualquier rama del saber si luego somos incapaces de poner en práctica lo aprendido. ¿Cuantos inventos han podido no ver la luz si su inventor no hubiera llevado a la práctica la idea, basada en su conocimiento teórico, que tuvo en un momento determinado?.

La segunda parte de la frase es tan cierta como la primera y, por desgracia, se da con bastante más frecuencia que su compañera en la vida real. Cuantas veces hemos contratado a un "profesional" para que nos haga un trabajo y al final, cuando ha terminado, vemos "la chapuza" que nos entrega. ¡Cuanta razón tenía Leonardo Da Vinci cuando expresó lo siguiente!: "Los que se enamoran de la práctica sin la teoría son como pilotos sin timón ni brújula que nunca podrán saber a donde van". Esto nos confirma que "práctica sin teoría es ceguera".

Pues bién, todo ello trasladado a la radio y la electrónica tiene una importancia decisiva. Por lo tanto, vamos a practicar un poco con algo esencial para construir nuestros circuitos de forma apropiada. ¿Que tal si aprendemos a soldar correctamente?. ¿Te gusta la idea?

Leer más...
Teoría
Telecomunicaciones - El telégrafo

Desde tiempos inmemoriales el hombre ha intentado comunicarse con sus semejantes a través de la distancia. Desde tiempos muy remotos esa ha sido una obsesión para el ser humano. El poder hacerle llegar un mensaje instantaneo a un ser querido a cientos o a miles de kilómetros era, hasta hace relativamente pocos años, una verdadera utopía.

El sonido y la luz han sido ampliamente utilizados a lo largo de la historia de la humanidad como soporte para los mensajes a transmitir. Sin embargo, ambos adolecen de problemas insalvables debido a su propia naturaleza. En el caso del sonido al tratarse de ondas mecánicas de muy corto alcance como ya hemos estudiado, y en el caso de la luz, aunque se trata de una onda electromagnética, es por contra de trayectoria rectilinea y, además, frenada en seco cuando se encuentra con un obstáculo opaco, lo que en ambos casos hacen imposible su utilización para estos menesteres.

La realidad ha sido que solo usando señales basadas en la electricidad, señales eléctricas, se han conseguido resultados adecuados a lo que se buscaba. ¿Te interesaría conocer como se desarrolló este asunto desde el principio, y de paso ahondar en el funcionamiento de los artilugios que se usaron en su desarrollo? Todo en este artículo.

Leer más...
Noticias
Información técnica de Sadelta actualizada

Añadida en la zona de descargas nueva información técnica de los micrófonos de Sadelta.

En breve subiremos el resto de la información de esta marca hasta tener completos todos los modelos que fabricaban.

Clica en "Leer completo..." para conocer los detalles de esta subida.

Leer más...

Resistencias en serie y en paralelo

Es posible que en multitud de ocasiones hayas oído las expresiones "serie" y "paralelo" al hablar sobre determinados circuitos y/o componentes eléctricos o electrónicos. De hecho, en algunos de los artículos publicados en nuestro blog hemos mencionado alguna vez estos vocablos. Pero... ¿sabes exactamente que significan?. ¿Puedes distinguir cuando un condensador o una resistencia están conectados en paralelo o en serie?. ¿Que diferencias existen entre estos dos tipos de conexiones eléctricas?.

La verdad es que hemos estado tan ocupados hablando de la transmisión y recepción de radio, que no le hemos prestado casi ninguna atención a algo tan fundamental como son los circuitos serie y paralelo. A partir del presente artículo y en los que siguen, vamos a aprender todo lo relacionado con este tema.

En principio debes saber que cualquier componente electrónico puede conectarse de una o de otra manera, según nos interese, para conseguir un determinado propósito. Y según sea el tipo de conexión, el comportamiento de dicho componente será uno o será otro. A veces solo es posible un solo tipo de conexionado, ya que podría suceder que cualquier otro tipo de conexión fuese incompatible con el circuito que tenemos entre manos. Toda la información la tienes a continuación.

En este articulo y en los que siguen vamos a analizar los diferentes tipos y configuraciones posibles de conexión y el comportamiento respectivo de algunos componentes electrónicos en diferentes situaciones de montaje. Comencemos explicando que significa que un componente determinado esté conectado en serie o en paralelo.

CONEXIONADO EN SERIE Y EN PARALELO
Cualquier componente eléctrico o electrónico que sea apropiado para que a través de él circule una corriente eléctrica, puede conectarse en serie, en paralelo o en una configuración mixta que incluya las dos anteriores si consideramos más de dos componentes. A dichos componentes se les llama "receptores", ya que no producen energía sino que "reciben" la corriente eléctrica y realizan un trabajo transformándola en luz, calor, sonido, movimiento, etc...

No solo los receptores pueden conectarse de estas tres maneras. También podemos hacerlo con los generadores. Por ejemplo, podemos conectar las pilas o baterías en serie, en paralelo o en una configuración mixta que incluya ambas de las anteriores.

Se dice que unos determinados componentes electrónicos se encuentran en serie cuando están conectados unos a continuación de otros formando una cadena.

Al usar una configuración de componentes montados en serie la intensidad de corriente que los atraviesa es la misma para todos los que forman el circuito.

Por ejemplo, supongamos que tenemos un circuito compuesto por una pila y dos bombillas eléctricas conectadas de esta manera. Para hacerte una idea más clara de lo que decimos puedes echarle un vistazo a la ilustración adjunta.

Conexionadas de esta forma, la intensidad de corriente es exactamente la misma para ambas bombillas.

Si tuviéramos tres bombillas en vez de dos, las conectaríamos tal y como podemos apreciar en este otro dibujo, de manera que la intensidad de corriente que circula a través de las tres bombillas es idéntica. Así podríamos conectar las bombillas que quisiéramos, siempre que respetemos los valores de tensión y corriente nominales de cada uno de los componentes del circuito.

Por el contrario, decimos que unos componentes electrónicos se encuentran en paralelo cuando tienen unidos entre sí los terminales de un lado y también tienen unidos entre sí los terminales del otro lado. En este caso las corrientes que atraviesan cada uno de ellos no están directamente relacionadas entre sí.

Como ejemplo de este tipo de configuración, y siguiendo con el modelo de las bombillas eléctricas, podemos ver en la ilustración dos de ellas conectadas en paralelo. Supongamos que una de ellas es de 5 watios y la otra de 10 watios.

Lógicamente, la bombilla de 10 watios lucirá más y consumirá el doble de corriente que su compañera de 5 watios. Si la bombilla de 10 watios fuera de 15 watios, consumiría el triple de corriente que su compañera de 5 watios.

Como vemos, en un circuito paralelo la intensidad de corriente de cada uno de sus componentes no tiene relación directa con la corriente que circula a través de los demás componentes.

Para saber cual es uno u otro tipo de conexión, basta echarles un ojo a los dibujos adjuntos, los cuales creemos que son lo suficientemente explícitos.

Queremos terminar este subtema diciendo que existe cierta similitud en la disposición que adoptan los componentes electrónicos al conectarse de una u otra forma, con la que ordinariamente adoptamos al aparcar nuestro automóvil. Normalmente, en la mayoría de los supermercados tenemos que aparcar "en paralelo", también llamado aparcamiento "en batería". Sin embargo, en muchas de las calles de la mayoría de las ciudades la forma de aparcar habitual es "en serie" o "en linea".

Una vez que hemos entendido que son las conexiones serie y paralelo, vamos a ver el comportamiento de las resistencias cuando se conectan en un circuito con una u otra configuración.

RESISTENCIAS EN SERIE
Consideremos ahora el circuito mostrado en la ilustración, el cual se compone de una pila de 9 voltios conectada a tres resistencias en serie; una de 120 Ω, otra de 270 Ω y una más de 470 Ω. ¿Recuerdas la ley de Ohm?. Si es así... ¿como calcularías la intensidad de corriente que circula por este circuito?.

Según la ley mencionada, la intensidad de corriente es el resultado de dividir la tensión entre la resistencia. La tensión sabemos que son los 9 voltios de la pila, pero... ¿y la resistencia? ¿que valor de resistencia hemos de usar en nuestros cálculos para hallar la intensidad de corriente en este circuito?. Tenemos que buscar un valor de resistencia único que sea equivalente a las tres resistencias en serie.

Si has leído el artículo en el que hablábamos de la resistencia eléctrica recordarás que la resistencia de un conductor dependía, entre otras cosas, de la longitud del conductor. ¿No es cierto que cuando colocamos varias resistencias en serie es como si hiciéramos el conductor más largo?. Observa que lo que hacen dos o más resistencias en serie es aumentar la resistencia total. Esto nos indica que para hallar la resistencia equivalente a varias posicionadas en serie, símplemente tenemos que sumar sus valores.

Por lo tanto, el valor de la resistencia equivalente a las tres anteriores colocadas en serie sería de 120 + 270 + 470 = 860 Ohmios. Solo nos queda dividir los 9 voltios de la batería entre los 860 Ohmios de la resistencia equivalente para saber cual es la intensidad de corriente que circula a través de nuestro circuito. La solución es la siguiente: 0,010465 amperios, o lo que aproximadamente es lo mismo, 10,5 miliamperios.

Tenemos ya la fórmula para hallar la resistencia que equivale a varias posicionadas en serie:

Resistencia equivalente (serie)
R1 + R2 + R3 +... Rn

En la fórmula anterior "Rn" representa el valor de la última resistencia que esté presente en el circuito serie, de manera que si existen por ejemplo 5 resistencias en serie "Rn" será la número 5. Con esto, llegamos a la conclusión de que en un circuito podemos sustituir varias resistencias en serie por una sola cuyo valor sea la suma de ellas, de lo que se deduce que dicha resistencia equivalente siempre será mayor que cualquiera de las que componen la red serie.

RESISTENCIAS EN PARALELO
De idéntica forma, también existe una resistencia equivalente para cuando hay varias conectadas en paralelo, aunque en esta ocasión su evaluación no resulta tan sencilla. Para que en este caso podamos entender el método de cálculo debemos introducir un concepto nuevo en nuestro estudio: se trata de la llamada "conductancia".

Aunque ahora no vamos a ahondar mucho en este tema, si mencionaremos que este parámetro, la conductancia, se representa con la letra "G" y su unidad de medida es el siemens (G viene del inglés "Gate" que significa "puerta").

La conductancia es la propiedad inversa de la resistencia y viceversa, la resistencia es la propiedad inversa de la conductancia. Dicho de forma un tanto coloquial, al igual que la resistencia es el nivel de dificultad que un cuerpo presenta al paso de la corriente eléctrica, podríamos decir que la conductancia es el nivel de permisión o facilidad que un cuerpo ofrece al paso de dicha corriente. Teniendo en cuenta lo que hemos dicho al principio de este párrafo, fíjate en la fórmula para calcular la conductancia de un cuerpo en función de su resistencia observando la figura siguiente.

De la fórmula anterior, suponiendo que tenemos una resistencia con un valor de 1 ohmio, podemos deducir que 1 siemens es la conductancia que presenta al paso de la corriente eléctrica una resistencia de 1 ohmio.


Cuantas más resistencias existan en un circuito paralelo más fácil será que la corriente eléctrica pase a su través, ya que le estamos ofreciendo más caminos por donde circular en un mismo instante. Con cada resistencia añadida a la red en paralelo estamos aumentando la facilidad con que el circuito deja pasar la corriente eléctrica (es como si aumentáramos la sección de un hilo conductor). Dicho de otra forma, con cada resistencia añadida se aumenta la conductancia de la red de resistencias en paralelo. Cuanto mayor es la conductancia, menor es la resistencia y viceversa.

Lo podemos ilustrar mediante la acción de desalojar un estadio de futbol. Si suponemos que al acabar el partido se abre solo una puerta para que la gente salga al exterior, el estadio tardará mucho más en ser desalojado que si abrimos al mismo tiempo 10 puertas distintas. De esta última manera, la "corriente" de personas que se establecerá durante el desalojo será diez veces superior. Habrá disminuido la "resistencia del estadio para ser desalojado" y "habrá aumentado su conductancia" (hipotéticamente hablando, claro está) por el gran número de personas que pueden circular al mismo tiempo.

Si aumentamos la conductancia de un circuito añadiendo resistencias en paralelo, ello significa que estamos reduciendo su resistencia equivalente, por lo que afirmamos que dicha resistencia equivalente siempre será menor que cualquiera de las que componen la red en paralelo.

La conductancia suele utilizarse cuando nos vemos obligados a hacer cálculos con resistencias muy pequeñas, de menos de un ohmio, ya que es muy incómodo manejar números con varios decimales. Por ejemplo, una hipotética resistencia de 0,005 ohmios tendría una conductancia de 200 siemens.

De todo lo anterior deducimos que podemos calcular la resistencia equivalente de un circuito paralelo sumando las respectivas conductancias de cada una de las resistencias para hallar la conductancia total, es decir, sumando los inversos de todas y cada una de las resistencias que lo forman. Una vez que tengamos el resultado de esta operación, es decir, la conductancia total del circuito paralelo, su resistencia equivalente la hallaremos calculando el inverso de dicho resultado, ya que la resistencia es la propiedad inversa de la conductancia. ¿Lo coges?. Fíjate como mostramos esto en la imagen que viene a continuación tomando como ejemplo el circuito paralelo de las tres resistencias insertado arriba.

Si el circuito paralelo estuviera formado por solo dos resistencias, podemos simplificar el cálculo de la resistencia equivalente de la manera que ilustramos en la imagen siguiente.

Como ves, realizar el cálculo de la resistencia equivalente de solo dos resistencias en paralelo es más fácil que hacerlo con un número más elevado de componentes.

También es muy fácil hallar la resistencia equivalente cuando todas las que participan en el circuito paralelo son del mismo valor. En este otro caso, el resultado buscado puede obtenerse simplemente dividiendo el valor de una sola de las resistencias entre el numero total de ellas que componen el circuito paralelo, tal y como se muestra a continuación. Para el caso de dos resistencias idénticas en paralelo:

En el caso de que fueran tres las resistencias en paralelo, todas ellas del mismo valor, el cálculo lo haríamos de la manera que sigue a continuación:

De esta manera hemos llegado al final de este interesante artículo. Seguiremos hablando de los circuitos serie y paralelo en la siguiente entrega, pero en esta ocasión lo haremos con relación a los condensadores, viejos conocidos por artículos anteriores publicados en este blog. Esperamos verte por aquí de nuevo, en Radioelectronica.es, tu punto de encuentro.

 
C O M E N T A R I O S   
Felicitaciones

#21 rafael arturo valera pernia » 11-04-2020 15:58

Muy didáctico y sencillo su forma de explicar el contenido.. Excelente :vct: :plup:

fisica

#20 ambar » 25-03-2019 17:29

la resistencia total equivalente a varias resistencias en paralelo o en serie es siempre ....
mayor que la mayor de ellas
menor que la menor de ellas
depende de los valores de las resistencias

Pregunta

#19 n3s » 23-10-2018 09:29

7. Per a quin circuit et caldria una bateria de més voltatge, per a un que tingui tres
bombetes en sèrie o per un altra que tingues aquestes bombetes en paral·lel?

DIODO LED A 120 VOLTOS

#18 RUBEN GONZALEZ » 19-08-2018 21:19

BUENOS DIAS, AMIGOS TENGO UNA CONSULTA URGENTE, QUIERO CONECTAR UN SOLO LED INTERMITENTE 5 mm A 120 VOLTIOS AC, CON SOLO UNA RESISTENCIA, HE ECHO LA PRACTICA CON VARIAS RESISTENCIAS Y EN ALGUNOS CASOS EL LED ENCIENDE MUY BIEN, PERO NO HACE SU FUNCION, PODRIAN AYUDARME, GRACIAS

Pregunta

#17 Carolina Olivera » 23-04-2018 01:17

Cómo cambio la resistencia total, sí sigo agregando resistencias en paralelo?? Por favor necesito una respuesta urgente!!
Gracias!

resistencias en serie y en paralelo

#16 ramon pinto » 05-03-2017 17:04

Muy buena la clase,muy didactica gracias,aclaro mis dudas sobre el tema.

RE: Resistencias en serie y en paralelo

#15 Heriberto Jose R » 27-12-2016 03:18

Extraordinaria y de gran utilidad

RE: Resistencias en serie y en paralelo

#14 Heriberto Jose R » 27-12-2016 03:17

Buena explicación. Muy útil para los técnicos de la rama

respuesta

#13 La DANIS peke... » 31-07-2014 05:03

te lo agradezco de veras...
Me Ayudo MUCHO... :D :D :D :lol: :lol: :lol: :-) :-) :-) 8) 8) 8)

electricidad

#12 victor » 21-04-2014 01:32

gracia por su aporte que muy claro espero poder hacer algunas consulta mas como me pongo en contacto con udtedes

RE: Resistencias en serie y en paralelo

#11 victor » 21-04-2014 01:30

gracias era justo lo que necesita saber y que muy claro

resistencia

#10 leodan » 29-03-2014 00:58

agradesco por su ayuda me sirvio de mucho.. gracias :P :roll: :roll: :roll: :roll: :lol: :lol: :lol:

resistencia

#9 adela » 19-03-2014 04:18

ok agradesco muchas gracias a su garn trabajo 8) 8) 8) 8) 8) :lol: :lol: :lol: :lol: :lol: :lol:

RE: Resistencias en serie y en paralelo

#8 Mexicanoo » 30-10-2013 15:03

grasiassss guapetonn /guapetonaaa

RE: Resistencias en serie y en paralelo

#7 juanis narvaez » 24-09-2013 18:06

me sirvio de muxo te felixito lo explicas muy bien :D

ana

#6 mairobys » 13-06-2013 17:06

gracias me sirvio demaciadoo muakkk :-) :-) :roll: :roll: 8) 8) :lol: :lol: :lol: :D :D :D :D :D :o :o :o :o

MUY BUENO

#5 Yahve » 07-06-2013 18:30

Muy buen trabajo, muy bien explicado, gracias.

RE: Resistencias en serie y en paralelo

#4 enrique » 26-05-2013 05:55

un trabajo un entendido excelente (Y)

RE: Resistencias en serie y en paralelo

#3 ana » 19-05-2013 03:53

:-) ;-) 8) GRACIAS GRACIAS GRACIAS GRACIAS GRACIAS

lol

#2 lol » 05-02-2013 00:32

Excelente trabajo y muy muy bien explicado me ayudaron bastante :D

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +