Acceso



Registro de usuarios
Otros Temas Interesantes
Contáctenos
Teoría
Diseño fácil de un amplificador transistorizado EC

¿A que aficionado a la electrónica no le atrae el diseño de circuitos?. Yo creo que son pocos los que escapan de esto.

Después de un largo periodo sin publicar artículos sobre teoría, aquí tienes uno que estoy seguro te va a encantar. Te explico como diseñar etapas amplificadoras con transistores en configuración de emisor común.

No te preocupes, que no te harán falta muchas matemáticas. Para llevar a cabo este pequeño proyecto solo necesitarás algunos conocimientos básicos sobre circuitos y saber sumar, restar, multiplicar y dividir.

Además, por si después de leer el artículo te quedan dudas, te hemos dejado un video en el que verás un ejemplo completo de como realizar el diseño desde cero.

El video incluye una simulación con Multisim, en la que podremos comprobar si lo que hemos hecho funciona o no funciona.

No te puedes perder la lectura de este artículo y la posterior visualización del video. Ya estás tardando en clicar en "Leer completo...".

Leer más...
Noticias
El embalse de Guadalcacín

El copioso año de lluvias que estamos teniendo en Andalucía está provocando un llenado masivo de la mayoría de los embalses de la región. Son muchos los que deciden visitar alguno de los más cercanos a su domicilio para llevarse un recuerdo del mismo en forma de imagen.

El embalse de Guadalcacín, muy próximo a la localidad de San José del Valle, es uno de los mayores de la comunidad andaluza y el más grande de la provincia de Cádiz. Tiene una capacidad total aproximada de 800 hectómetros cúbicos y cuando se acabó de construir en el año 1995 nadie pensó que algún dia se llenaría.

Sin embargo, a fecha de hoy, este pantano está a punto de rebosar, ya que se encuentra a más del 95% de su capacidad máxima, con un total de 766 hectómetros cúbicos de agua embalsada. De hecho, y en previsión de las lluvias que están por llegar, este "macropantano" ya está desembalsando agua por sus aliviaderos de fondo.

Leer más...
Radioaficionados
Receptor a reacción para Onda Corta (II)

Continuamos con la segunda parte de este interesante tema que trata de la construcción de un sensible receptor regenerativo con escucha en altavoz, constituido por solo dos componentes activos; 1 transistor y 1 circuito integrado.

A pesar de incorporar tan pocos componentes estamos seguros que, aquellos que se aventuren a construirlo, obtendrán una tremenda satisfacción cuando al ponerlo en marcha puedan oir una gran cantidad de emisoras, incluyendo aquellas de paises muy alejados del nuestro.

Una vez que llevemos a la práctica este circuito, montando en su correspondiente placa de circuito impreso todos los componentes, podremos instalarlo en el interior de una caja a la que habremos añadido los controles necesarios para su uso y manejo en las mejores condiciones, e incluso fabricarle una bonita carátula, lo que le dará un excelente aspecto.

El circuito puede alimentarse con pilas corrientes ya que su consumo ciertamente es muy bajo. De esta manera tendremos la oportunidad de llevarlo con nosotros a cualquier parte y lo convertiremos en un equipo portable, aunque si pensamos usarlo únicamente en casa quizás sea mejor incorporarle una pequeña fuente de alimentación para conectarlo a la red de distribución eléctrica.

En el artículo anterior ya explicamos el principio de la "reacción" o "regeneración" de señales de alta frecuencia. No obstante, aún no hemos dicho nada sobre el funcionamiento detallado de nuestro receptor. Vayamos al grano entonces.

Leer más...
Miscelanea
Sencillo VU-Meter a diodos LED

Lejos quedan aquellos tiempos en los que todos los medidores, y al decir todos me refiero a TODOS, estaban construidos mediante un galvanómetro y la lectura se realizaba con una aguja que parecía deslizarse al recorrer una escala graduada.

A decir verdad, para aquellos que en cierta manera somos de "la vieja escuela", los referidos medidores, midieran lo que midieran, tenían un encanto muy especial y podría decirse que sentimos "morriña" cuando los recordamos, como diría un gallego al estar lejos de su tierra y escuchar el sonido de una gaita.

Pero llegaron los diodos LED y se hizo la luz. Desde entonces, son muchos y muy variados los VU-Meters, vúmetros o medidores de unidades "VU" (del inglés Volume Unit) que se han desarrollado incorporando este componente electrónico, sobre todo usando la tecnología de la integración.

Pero en este artículo no vamos a publicar la información técnica para construir uno de estos instrumentos con los clásicos circuitos integrados UAA170 o UAA180 ni con cualquier otro. Tampoco vamos a enseñarte a conectar esas "barritas" LED con diferentes diseños. ¡Con ellas practicamente lo tienes todo hecho!.

En este artículo vamos a enseñarte como construir un VU-Meter LED con componentes discretos. ¡Dale ya al "Leer completo..." para saber más!.

Leer más...
Práctica
La soldadura

"Teoría sin práctica es parálisis y práctica sin teoría es ceguera". Con la primera parte de esta frase, cuya autoría desconocemos, podemos resaltar la importancia de que cualquier cosa que estudiemos siempre vaya acompañada de ejercicios prácticos. De nada en absoluto nos sirve estudiar muy a fondo cualquier rama del saber si luego somos incapaces de poner en práctica lo aprendido. ¿Cuantos inventos han podido no ver la luz si su inventor no hubiera llevado a la práctica la idea, basada en su conocimiento teórico, que tuvo en un momento determinado?.

La segunda parte de la frase es tan cierta como la primera y, por desgracia, se da con bastante más frecuencia que su compañera en la vida real. Cuantas veces hemos contratado a un "profesional" para que nos haga un trabajo y al final, cuando ha terminado, vemos "la chapuza" que nos entrega. ¡Cuanta razón tenía Leonardo Da Vinci cuando expresó lo siguiente!: "Los que se enamoran de la práctica sin la teoría son como pilotos sin timón ni brújula que nunca podrán saber a donde van". Esto nos confirma que "práctica sin teoría es ceguera".

Pues bién, todo ello trasladado a la radio y la electrónica tiene una importancia decisiva. Por lo tanto, vamos a practicar un poco con algo esencial para construir nuestros circuitos de forma apropiada. ¿Que tal si aprendemos a soldar correctamente?. ¿Te gusta la idea?

Leer más...
Teoría
El receptor elemental (VII)

En el artículo anterior hemos visto en profundidad como funciona "internamente" un circuito resonante paralelo. Sin embargo, la realidad es que el conocer su funcionamiento no nos ha aclarado mucho con respecto a la faceta de selector de frecuencias que debe realizar en nuestro receptor elemental. En el artículo que empezamos ahora vamos a conocer, por medio de un sencillo experimento, que es lo que este circuito hace exactamente con las señales de radio para conseguir seleccionar una sola de ellas y desechar el resto.

Quizás te parezca que la lectura del artículo anterior no ha servido de gran cosa. Sin embargo te alegrará saber que no es así. Lo estudiado entonces va a servirte de mucho, y cuando llegue el momento en que toquemos los osciladores es muy probable que vuelvas a él para repasar los conocimientos que se exponen allí. Por ahora, solo puedo decirte que, si no lo has leído, harías bién en volver atrás y leerlo cuidadosamente, procurando entender lo que se dice y retener las ideas principales. Te puedo asegurar que te serán de mucha utilidad en el futuro, si sigues con nosotros.

Ahora, vamos a comenzar nuestro experimento. ¿Quieres pasar a verlo?... pues adelante.

Leer más...
Noticias
Nuevo calculador para empresas Ebay

Os presentamos un nuevo calculador de precios de venta para Ebay. Se trata de una nueva versión, distinta de la orientada a particulares, la cual es ideal para el cálculo de precios de empresas con tienda. Facilitará mucho las cosas si se ponen artículos a la venta de forma constante y a diario.

Leer más...

Fuerza Electromotriz - Ley de Ohm

Ya hemos mencionado en un artículo anterior la expresión "fuerza electromotriz", la cual se representa como "f.e.m." de forma abreviada. Con respecto a este concepto queremos dejar claro cierto matiz, que quizás no hemos entendido a cabalidad al no haber profundizado lo suficiente en el tema, relativo a su relación con la diferencia de potencial (d.d.p.). ¿Significa lo mismo fuerza electromotriz (f.e.m.) que diferencia de potencial (d.d.p.)? Unas personas creen que si, otros dicen que no, y sin embargo para cuantificar y medir los dos parámetros se utiliza la misma unidad, el voltio. ¿Que piensas tu?.

Por otra parte, en el artículo precedente hemos hablado de la última unidad de medida básica que nos faltaba para comenzar a hacer cálculos con circuitos electrónicos. Nos referimos al ohmio. Tenemos ya claro lo que es la unidad de diferencia de potencial o tensión (V), el voltio. También tenemos claro en nuestra mente lo que es la unidad de intensidad de corriente (I), el amperio. Y, como hemos dicho, recientemente hemos hablado de la unidad de resistencia eléctrica (R), el ohmio. ¿Que esperamos entonces para hablar de la célebre ley de Ohm?. En este artículo comenzamos ya a adentrarnos en el corazón de los circuitos electrónicos, hablaremos de ciertos tipos de generadores y además, de paso, aclararemos algunos conceptos como la diferencia entre corriente continua (C.C.) y corriente alterna (A.C.). ¿Te parece interesante? Pasa dentro, por favor...

En el primer artículo en el que hablamos de los generadores dijimos que la fuerza electromotriz (f.e.m.) es la capacidad de un generador para producir y mantener una diferencia de potencial entre sus bornes. Además hemos dicho que la diferencia de potencial es la diferencia de cargas eléctricas entre dos cuerpos. ¿Entendemos bién las dos definiciones?. Vamos con un ejemplo. ¿Te acuerdas del símil hidráulico que utilizamos para explicar el concepto de d.d.p.? Míralo de nuevo. Observa que entre los dos depósitos existe una diferencia de potencial debido a la diferencia de niveles de agua. Sin embargo no existe nada para mantener esa d.d.p. cuando abramos el grifo y los niveles de agua se vayan igualando, por lo que aunque estamos en presencia de una d.d.p. pero nota que no existe ninguna fuerza electromotriz para mantener la diferencia de potencial ¿lo coges?. ¿Todavía no?. Sigue leyendo.

Observa ahora el mismo circuito hidráulico anterior pero con un generador que permite mantener la diferencia de potencial entre los dos depósitos cuando el agua circule entre ellos. Ahora la d.d.p. seguirá existiendo aunque abramos el grifo y el agua circule gracias a que existe un generador que tiene la capacidad necesaria (f.e.m.) para mantener esa diferencia de potencial. Por lo tanto la fuerza electromotriz (f.e.m.) es la causa de que exista y se mantenga una diferencia de potencial (d.d.p.). ¡¡Ahora si lo has entendido!!.

Podemos decir, aplicando nuestro símil hidráulico a un circuito eléctrico, que la f.e.m. es la causa de que exista una d.d.p. en los bornes de un generador gracias a que internamente, dentro del generador, se produce un proceso de reposición de las cargas eléctricas que circulan por el circuito externo. Por lo tanto la f.e.m. aplica al movimiento de cargas en el interior del generador, mientras que la d.d.p. es la que aplica al circuito exterior al generador.

Una vez que hemos dejado clara la diferencia entre f.e.m. y d.d.p. vamos ahora a plantear un pequeño problema relativo a nuestro símil hidráulico. Si suponemos que el diámetro del tubo que conecta los dos depósitos permanece inalterable... ¿de que dependerá que el caudal que pase a su través, los litros por minuto, sea mayor o menor? ¿Lo adivinas? ¡¡Exacto!! Dependerá de la diferencia de los niveles de agua entre los dos depósitos. A mayor diferencia de niveles de agua existirá una presión o d.d.p. también mayor que impulsará con mas fuerza el agua y por lo tanto esta circulará con mayor velocidad por el tubo de conexión, aumentando su caudal. ¿Que nos dice esto?. Nos dice algo importantísimo que también supo ver el genial físico y matemático alemán Georg Simon Ohm.

Si hemos comparado la diferencia de niveles de agua con la d.d.p. eléctrico, el caudal que circula por el tubo que conecta los depósitos con la intensidad de corriente eléctrica y el diámetro del tubo con la resistencia (a mayor diámetro menos resistencia y viceversa), estamos ya en condiciones de enunciar la Ley de Ohm. Esta nos dice que al aumentar la d.d.p. aumentará también la intensidad de corriente, es decir, existe una proporcionalidad directa entre ambos parámetros. Por supuesto también aplica la inversa de la situación, cuanto menor sea la d.d.p. menor será la intensidad de corriente. Por lo tanto podemos afirmar que, para una misma resistencia (un mismo diámetro del tubo) la intensidad de corriente (caudal) dependerá de la d.d.p. (diferencia de niveles) existente entre dos puntos de un circuito. Fácil... ¿No?.

Tenemos ya una relación constituida entre los tres factores más importantes a tener en cuenta en todo circuito eléctrico: la d.d.p. que actúa de motor, la intensidad de corriente que se produce gracias a la primera y la resistencia que se opone al paso de la segunda. Queda establecido entonces, después de lo estudiado, que la intensidad de corriente de un circuito es directamente proporcional a la d.d.p. aplicada e inversamente proporcional a la resistencia que encuentra a su paso. Esto se puede plasmar de forma matemática de la siguiente manera:

En la fórmula anterior, I representa a la intensidad de corriente, V es la diferencia de potencial y R es la resistencia. Si tenemos frescos en nuestra mente los conocimientos matemáticos de colegio de seguro que recordamos como despejar incógnitas, de manera que podemos deducir dos igualdades mas, la correspondiente a la resistencia (R) y la correspondiente a la d.d.p. (V) las cuales quedan de la siguiente manera:

Tenemos con esto ya definidas las tres fórmulas correspondientes a la Ley de Ohm. Para aquellos que no hayan estudiado demasiadas matemáticas decir que el punto (·) entre la R y la I de la fórmula V=R·I significa una multiplicación de estos dos factores (el punto es lo mismo que el signo "x" de multiplicar). Si hacemos que en esta fórmula la resistencia sea de 1 ohmio y la intensidad de 1 amperio resulta que en la multiplicación obtenemos 1 voltio. Gracias a esto podemos definir técnicamente la unidad de diferencia de potencial, el voltio, como sigue:

UN VOLTIO ES LA DIFERENCIA DE POTENCIAL NECESARIA PARA HACER CIRCULAR UNA INTENSIDAD DE CORRIENTE DE 1 AMPERIO A TRAVÉS DE UN CONDUCTOR CUYA RESISTENCIA SEA DE 1 OHMIO

De las otras fórmulas podemos deducir las definiciones técnicas para ohmio y para amperio:

UN OHMIO ES LA RESISTENCIA ELÉCTRICA QUE OPONE UN CONDUCTOR AL PASO DE LA CORRIENTE SI ESTA RESULTA SER DE 1 AMPERIO CUANDO SE LE APLICA UNA DIFERENCIA DE POTENCIAL DE 1 VOLTIO

UN AMPERIO ES LA INTENSIDAD DE CORRIENTE QUE CIRCULA A TRAVÉS DE UN CONDUCTOR CUYA RESISTENCIA ES DE 1 OHMIO CUANDO TIENE APLICADA UNA DIFERENCIA DE POTENCIAL DE 1 VOLTIO

Estas igualdades que relacionan tensión (V), intensidad de corriente (I) y resistencia eléctrica (R) forman la famosa Ley de Ohm. Gracias a ella la ciencia ha podido llegar al estado de desarrollo en que se encuentra en nuestros dias y es de obligado conocimiento si queremos avanzar en nuestro estudio de la electrónica y la radio. Fíjala en tu mente. Piensa en ella y recuérdala siempre porque te será de absoluta necesidad a partir de ahora si quieres seguir nuestros artículos técnicos.

Ya hemos dicho que la intensidad de corriente la medimos con un instrumento llamado amperímetro. Igualmente podemos decir que para medir la d.d.p., los voltios, utilizamos un voltímetro. ¿Recordamos donde teníamos que colocar el amperímetro para medir la corriente?... ¡¡Efectivamente!!... Hay que colocarlo en serie con el circuito de manera que toda la corriente pase por el instrumento. Sin embargo el voltímetro mide la d.d.p. entre dos puntos distintos de un circuito por lo que deberemos colocarlo en paralelo, conectando sus bornes en cada uno de los puntos cuya d.d.p. nos interesa medir.

CORRIENTES CONTINUA Y ALTERNA
Hasta ahora, cuando hemos hablado del generador en un artículo anterior lo hemos representado por una simple pila. No obstante existen muchos más tipos de generadores de electricidad. La susodicha pila es un generador de tipo químico que suministra una corriente continua. Aclaremos este concepto... ¿A que llamamos corriente continua? SE CONOCE COMO CORRIENTE CONTINUA A LA CORRIENTE ELÉCTRICA QUE FLUYE DE UN GENERADOR Y SIEMPRE LO HACE CON LA MISMA INTENSIDAD Y EN EL MISMO SENTIDO. Dicho de otra manera, los generadores de corriente continua suministran un flujo de electrones que circulan siempre en la misma dirección. Los polos positivo y negativo de un generador de corriente continua nunca cambian de polaridad y siempre mantienen la misma tensión. El polo positivo siempre es positivo, el negativo siempre es negativo y su d.d.p. es siempre constante.

En contraste con la corriente continua tenemos a la corriente alterna, la cual estudiaremos en artículos posteriores. La corriente alterna es producida por un generador que cambia de polaridad constantemente, es decir, sus polos cambian de positivo a negativo un numero determinado de veces por cada segundo. Como consecuencia de esto, la dirección de la corriente no es uniforme, sino que también cambia al compás de la polaridad de la tensión del generador de manera alterna.

Con cada cambio de polaridad tenemos un cambio de dirección de la corriente ya que el polo que antes era positivo se convierte en negativo en el siguiente periodo de tiempo y viceversa. Ya veremos la utilidad y la ventaja que tiene usar esta forma de electricidad en forma de corriente alterna.

TIPOS DE GENERADORES
Existen diferentes metodos para crear electricidad. Ya hemos hablado de la electricidad creada por medios químicos cuando nos hemos referido a la pila. La pila fué una invención del físico italiano Alejandro Volta, nacido en la ciudad de Como en 1745.

Se trata del primer generador de corriente sin que intervenga en su proceso ningún tipo de energia mecánica. Volta descubrió que si se ponen en contacto íntimo dos metales diferentes aparecía entre ellos una fuerza electromotriz. Aunque en principio, por el simple contacto de los metales, dicha f.e.m. era casi inapreciable, Volta observó que esta aumentaba considerablemente cuando los dos metales entran en contacto con agua acidulada. Por medio de la experimentación y la observación, el físico italiano llegó a la conclusión de que el par de metales que más rendimiento daban eran el cobre y el cinc.

Si quieres probar el experimento de Volta por ti mismo coge un simple limón y clávale dos trozos de metal, uno de cobre y otro de cinc, en sitios diferentes de manera que ambos lleguen a tener contacto íntimo con los gajos del limón pero sin que ninguno de los metales se toquen entre ellos. Ahora coloca las pinzas de un voltímetro en los metales y verás que existe una d.d.p. de casi un voltio entre ellos. Curioso... ¿no?. Volta lo hizo de manera algo distinta. El cogió un disco de cinc y uno de cobre y entre los dos puso un trozo de paño impregnado en ácido sulfúrico diluido.

¿Quieres saber porqué, incluso en la actualidad, se le llama "pila" a este tipo de generador? Se le llama "pila" porque en un principio, el primer generador que volta construyó fué exactamente eso, una pila de discos de cobre y cinc alternados y separados por trozos de paño empapados en ácido sulfúrico diluido. A cada elemento compuesto de un disco de cobre, el paño empapado en ácido sulfúrico y el disco de cinc se le llama PAR VOLTAICO. Al hacerlo así logró construir un generador mucho mas potente que el que solo tenía un par voltaico.

Aunque hoy dia las figuras geométricas que forman los envases de este tipo de generadores no tienen ni mucho menos forma de pilas, por analogía con la función que realizan se les sigue llamando así. Cada pila tiene dos bornes, uno positivo y otro negativo. Es interesante saber que estos bornes se llaman ELECTRODOS. Además, cada electrodo tiene un nombre que le distingue. Al electrodo positivo se le llama ÁNODO y al electrodo negativo se le llama CÁTODO.

Las pilas, una vez agotadas no tienen ya utilidad. Sin embargo existe otro tipo de dispositivo químico parecido a la pila que, sin que estrictamente pueda llamársele generador, es recargable, de manera que cuando se agota, y por medio de un proceso de recarga eléctrica, puede volver a utilizarse normalmente. A este tipo de dispositivo se le llama ACUMULADOR diferenciandose de la pila en que para que pueda suministrar una corriente eléctrica primero hay que cargarlo, de manera que primero almacena la energía que se le suministra para después cederla. Ejemplo de ellos son las clásicas baterías de plomo que incorporan los automóviles. Existen también acumuladores de Niquel-Cadmio (ya anticuado), de Metal-Hidruro, de Litio, etc...

Existen otros tipos de generadores que utilizan otros medios para producir electricidad. Por ejemplo, el calor puede utilizarse para generar una corriente eléctrica. Al calentar un par de metales distintos estando en íntimo contacto se produce una fuerza electromotriz entre ellos. Al igual que las pilas químicas utilizan pares voltaicos, los generadores por calor utilizan lo que se llama pares termoeléctricos o termocuplas, dando lugar cuando se conectan varios en serie a lo que se llama una termopila.

También puede producirse electricidad por medio de la luz para lo cual se utilizan los llamados metales fotosensibles. Sin embargo esta técnica solo es capaz de crear corrientes eléctricas muy débiles por lo que no es útil para generar electricidad en cantidades aprovechables. Resulta muy interesante el llamado efecto fotoeléctrico por medio del cual algunos materiales semiconductores, entre ellos el selenio, son capaces de modificar su resistencia eléctrica en función de la luz que reciben. Este fenómeno ha dado lugar a la creación de la llamada célula foteoeléctrica. El efecto fotoeléctrico tiene múltiples utilidades en la actualidad, una de las mas conocidas y populares es el fotómetro que incorporan la mayoría de cámaras de fotos para la medición de la luz ambiente.

 
C O M E N T A R I O S   
RE: Fuerza Electromotriz - Ley de Ohm

#7 YIO » 31-10-2018 08:53

me podrian recomendar un buen libro que venga este tema con esta explicación.
MUY BUEN TEMA EXCELENTE TRABAJO

RE: Fuerza Electromotriz - Ley de Ohm

#6 Laura » 15-05-2018 12:31

¿Cuándo la fem vale 1? :sad: :sad:

RE: Fuerza Electromotriz - Ley de Ohm

#5 alessandra » 16-11-2016 02:33

muy buena la info., me sirvió de mucho, gracias! c:

RE: Fuerza Electromotriz - Ley de Ohm

#4 Luis DAniel » 23-02-2014 02:23

Hola amigos muy bueno el articulo en serio me ayudó mucho, me aclaró muchas dudas; pero aún tengo algunas dudas:

¿Como es el cambio de polaridad en la corriente alterna?¿Que genera estos cambios de polaridad?¿Si cambia el sentido de la corriente por el cambio de la polaridad entonces significa que la corriente regresa? o ¿como es que sigue su trayectoria?

electricidad basica

#3 felix » 07-10-2013 00:30

formula sencilla de la fem. gracias

exposicion de fisica FUERZA ELECTROMOTRIZ

#2 AngeLiqa » 22-05-2012 01:40

SI LO BUSCO IGUAL NO SALE ASI ME SALE CON OTRA FORMULA ES LO MISMO P=R/A?

tarea de fisica

#1 YEFERSON » 19-05-2012 01:35

ESTA ES BUEN INFORMACION PARA FISICA

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +