Acceso



Registro de usuarios
Contáctenos
Teoría
Los semiconductores - La unión PN

Para lograr comprender los fenómenos que se producen en las entrañas de un diodo, de un transistor o de cualquier otro dispositivo semiconductor, primero tenemos que aprender cosas relativas a los llamados "portadores de carga". Ellos son los encargados de establecer el flujo de corriente eléctrica en el cristal semiconductor.

Hasta el momento conoces de sobra a uno de ellos, el electrón, el cual también existe en los materiales buenos conductores. Es probable además que, aunque solo sea de oidas, conozcas al otro miembro de esta familia, el hueco. La existencia de este último en su estructura cristalina es lo que hace especiales a los semiconductores.

El objetivo que nos proponemos conseguir con este artículo es darte la información necesaria para que sepas como actúan estos portadores de carga en el seno del cristal semiconductor, además de otros temas relacionados e igualmente interesantes. Una vez que hayas asimilado esto, estarás preparado para conocer el funcionamiento de la unión PN, alma y corazón de gran parte de los dispositivos semiconductores existentes.

Leer más...
Otros Temas Interesantes
Noticias
Revista 27 MHz - Fascículo 4

Fascículo Nº 4 de la revista "27 MHz" dedicada a la CB (Banda Ciudadana).

Extracto de su contenido: Circuitos PLL, teoría de antenas (IV), amplificador de voz, antena vertical de balcon, incorpora un VOX a tu radioteléfono, fuentes de alimentación con reguladores fijos, comprobación y medida de semiconductores, diodos zener, código Q, argot y otros códigos, etc...

Leer más...
Radioaficionados
Protección contra inversiones de polaridad

Una de las averías más comunes que nos podemos encontrar en las emisoras de radioaficionado es la inversión de polaridad. Dicha avería se produce al conectar el equipo inadvertidamente a la alimentación con las conexiones al revés, el cable de la entrada positiva (rojo) al electrodo negativo de la batería y el cable de la entrada negativa (negro) al electrodo positivo. Hay radioaficionados que, a pesar de las advertencias por parte del servicio técnico y para ahorrarse unos euros, conectan la emisora a una sola de las baterías (12V) de un vehículo dotado de dos unidades en serie (24V), en vez de utilizar la solución más apropiada que es un reductor de tensión de 24 a 12 voltios. Esto es una fuente constante de problemas tanto para la emisora como para las propias baterias del vehículo y puede propiciar una inversión de polaridad cuando alguien manipula dichas baterias sin desconectar previamente la emisora.

En este artículo vamos a estudiar los sistemas de protección contra inversiones de polaridad de que disponen tanto las emisoras de radioaficionado como muchos otros aparatos electrónicos, entre ellos los ordenadores portátiles por ejemplo, para evitar que el equipo en cuestión resulte dañado (o por lo menos reducir en lo posible el daño) ante un percance de este tipo, y su reparación práctica tomando como ejemplo una conocida emisora de radioaficionado averiada por esta causa. ¿Te interesa?.

Leer más...
Miscelanea
Monitor para la batería del automóvil

Es curioso, pero la verdad es que a todos nos ha pasado alguna vez lo mismo. Nos levantamos una mañana de frio invierno, con prisas porque tenemos el tiempo justo para llegar al trabajo (el que tenga esa suerte). Introducimos la llave de contacto de nuestro auto y la giramos. ¡SORPRESA!... el motor de arranque no voltea o lo hace con desgana.

El coche no furula, no arranca... Entonces algunos manifestamos nuestro enfado en un idioma desconocido, emitiendo ciertos sonidos guturales como.... "Grrrrrrrrr!!!!!". Otros, algo más "expresivos", comenzamos a lanzar por nuestra boquita ciertos vocablos malsonantes, dirigidos sobre todo hacia nuestro sufrido auto que ya tiene, como poco, cinco o seis años.

Sin embargo, esta situación la podríamos haber evitado si hubieramos tenido instalado el circuito que describimos en el presente artículo. Se trata de un simpático piloto de color rojo que nos avisará antes de tiempo de que ha llegado la hora de sustituir la batería de nuestro coche.

Si has leido los dos primeros artículos de la sección "Básico" estamos seguros que no vas a tener problemas para asimilar lo que sigue. ¡Vamos allá!

Leer más...
Práctica
El teléfono yogur y su versión electrónica

Es muy probable que cuando éramos niños hayamos jugado alguna que otra vez con el llamado "teléfono yogur", probablemente fabricado por nosotros mismos ya que su construcción no ofrece prácticamente ninguna dificultad.

Con solo un par de recipientes de plástico vacíos, que casi siempre se conseguían una vez que habíamos consumido los yogures (de ahí el nombre por el que se le conoce normalmente), unos metros de hilo suficientemente resistente y poco más, teníamos un juguete con el que pasábamos horas y horas de ocio y diversión.

Mientras uno de nosotros aproximaba el bote de yogur a su oreja el otro lo hacía con el que le correspondía a su boca y comenzaba la "transmisión" del mensaje. Y aunque la distancia entre los dos interlocutores no podía exceder de algunos metros, la transmisión de la "fonía" que se conseguía con este artilugio, aunque débil, era relativamente buena.

La verdad es que aquellos eran otros tiempos. Nos divertíamos con cualquier cosa. Y aunque hoy este juguete quizás le siga llamando la atención a los más pequeños, no hay que olvidar que vivimos en la era de la electrónica y casi todos esperamos algo más. De ese "algo más" hablamos en este artículo. Vamos a presentarte la versión electrónica del teléfono yogur. ¿Quieres ver de que se trata?. ¡Adelante!.

Leer más...
Teoría
Las válvulas de vacío IV

Cuarto artículo de esta serie, en la que estamos haciendo una leve incursión en el mundo de las válvulas de vacío. En esta ocasión hablaremos sobre el triodo termoiónico, aunque como ya hemos dicho hasta la saciedad, sin apenas profundizar en su estudio por las razones ya comentadas.

Es interesante resaltar la importancia que adquirió la electrónica hace unos pocos años con la invención del triodo, no solo en lo que concierne a la emisión y recepción de señales electromagnéticas, sino a todo un abanico de aplicaciones que llegarían con el tiempo. Podría decirse con respecto a aquel acontecimiento histórico, que la electrónica es una ciencia que vió la luz con dicho descubrimiento.

Particularmente en lo que toca a la radio, con solo una válvula triodo podía conseguirse fabricar un receptor con una sensibilidad extraordinaria para su época, con el que a la sazón, los radioaficionados de entonces disfrutaron como cosacos, aunque a decir verdad, su selectividad no era muy encomiable.

Se trata del llamado "receptor a reacción", mejorado posteriormente para la gama de VHF con el circuito "super-regenerativo" o de "super-reacción", ambos inventados por el ingeniero norteamericano Edwin Howard Armstrong.

De todo ello, y mucho más, hablaremos a continuación. ¿Te apuntas?.

Leer más...
Noticias
Un simple pero útil calculador para Ebay

Llevamos algún tiempo planeando diseñar un pequeño programa que nos solucione el problema que se nos presenta a la hora de poner a la venta un artículo en la web de Ebay. Somos conscientes de que este tipo de software no tiene relación con la electrónica ni con el radioaficionado, sin embargo estamos seguros que será del interés de muchos de vosotros que, quizás en mas de una ocasión, os habéis puesto manos a la obra con el fin de hacer algún negocio en esta famosa web.

La utilidad del software es muy simple; te dice a cuanto tienes que vender un artículo determinado para recibir una cantidad precisada por tí mismo, una vez descontadas las comisiones que aplican tanto Ebay como Paypal, en este último caso si se cobra por este medio. Por ahora el programa es válido solo para Ebay España. Más adelante, si existe interés por parte de los usuarios de otros paises, se habilitarán otras versiones.

Leer más...

La resistencia eléctrica

Seguramente te habrás dado cuenta de que cada vez que hemos hablado de circulación de la corriente electrica hemos dicho que lo hace a través de un conductor o un hilo conductor. A nadie se le ocurriría hacer un circuito con hilo de nylon porque jamás conseguiría que la corriente eléctrica circulara a través de él. Al hablar de hilos conductores nos referimos a hilos o cables metálicos ya que son este tipo de materiales los que mejor conducen la corriente eléctrica. De hecho existen materiales que permiten el paso de la corriente a su través sin apenas ninguna dificultad. Estos materiales son los llamados CONDUCTORES y la plata se lleva la palma de todos ellos siendo el metal mejor conductor que existe.

Sin embargo, el metal conductor más utilizado en instalaciones eléctricas no es la plata, como cabe suponer debido a su alto precio, sino el cobre. Sin ser tan buen conductor como la plata, su precio mas bajo y su gran ductilidad (propiedad de poder deformarse de forma continuada sin romperse) que permite obtener hilos muy finos, hacen del cobre el conductor eléctrico por excelencia en la mayoria de las industrias. En este artículo vamos a hablar de los buenos y los malos conductores de la electricidad, pasando por los que están en la zona intermedia. ¿Nos sigues?.

Vistos desde el punto de vista eléctrico, los materiales que son buenos conductores de la electricidad son aquellos cuyos átomos se desprenden con facilidad de los electrones de su última órbita. Estos electrones, los de la última capa del átomo, reciben el nombre de "electrones de valencia" y la última capa en la que orbitan "órbita de valencia". Recordemos esto ya que es muy importante para el próximo estudio de los semiconductores:

Los electrones de la última órbita del átomo se llaman "electrones de valencia" y son los responsables de que el material del que forman parte sea o no buen conductor

Pero no todos los tipos de átomos sueltan electrones con la misma facilidad que lo hacen los que componen la plata o el cobre. Hay átomos que "no dejan", por decirlo así, que sus electrones de valencia se separen de ellos y la razón la veremos en los artículos dedicados a los semiconductores. Estos átomos "se resisten" a convertirse en átomos excitados y permanecen estables todo el tiempo. Es cierto que algunos electrones logran "escapar" de la severa atracción de la que son objeto por parte de su nucleo, pero en cantidades bastantes mas pequeñas que en los materiales que son buenos conductores. Además, esta oposición aumenta o disminuye en función de la temperatura y esto lo tendremos muy en cuenta cuando nos toque estudiar las válvulas de vacio (efecto termoiónico) y también los transistores.

A los materiales que no son tan buenos conductores como la plata o el cobre pero permiten que haya algo de corriente eléctrica a su través, dependiendo esta de las condiciones a que sean sometidos (ya hablaremos de cuales son estas condiciones), se les conoce comunmente como SEMICONDUCTORES. Ejemplo de estos son el germanio, el silicio o el selenio.

Pero también existen aquellos materiales que son absolutamente ineficaces para conducir la electricidad. Sus átomos no permiten en absoluto que los electrones de valencia escapen a su control de manera que en su interior prácticamente no existen electrones libres. A estos se les llama AISLANTES porque no permiten que la corriente eléctrica circule a través de ellos. Más adelante veremos el motivo por el que los átomos de ciertos materiales son tan estables que sus electrones de valencia están "desganados" y no tienden a escapar de la atracción de su núcleo y sin embargo los de otros cuerpos, como el cobre o la plata, si se separan con mucha facilidad y se convierten en electrones libres haciendo conductor al cuerpo del que forman parte.

Podemos decir entonces que un determinado tipo de material será más o menos conductor dependiendo de la "dificultad" que oponga al paso de la corriente eléctrica. En electricidad y electrónica, a esta "dificultad" se le conoce como la RESISTENCIA ELÉCTRICA del conductor o, en su caso, del semiconductor o del aislante. Hasta los mejores conductores oponen alguna resistencia a la corriente eléctrica, aunque esta oposición puede llegar a ser mínima, pero siempre ejercerá cierta influencia sobre la corriente eléctrica que circula a su través. Afirmamos, por lo tanto, que en un circuito compuesto de un generador y un hilo conductor conectado a el, para una misma tensión del generador la intensidad de corriente eléctrica dependerá de la mayor o menor resistencia  que oponga el conductor a su paso. Según todo lo visto en los párrafos precedentes, definimos el concepto:

RESISTENCIA ELÉCTRICA ES LA DIFICULTAD QUE TODO CONDUCTOR OPONE AL PASO DE LA CORRIENTE ELÉCTRICA, DETERMINANDO LA INTENSIDAD QUE CIRCULA POR ÉL

Llegados a este punto deberíamos preguntarnos... ¿Y de que depende la resistencia que ofrece un conductor? Pués existen TRES FACTORES DETERMINANTES:

1. La naturaleza atómica del conductor.
2. Su longitud
3. Su grosor

El primer punto ya lo hemos estudiado en este artículo y hemos visto que dependiendo de la estructura atómica del material, este se comportará como un conductor, como un semiconductor o como un aislante y esto nos lleva a la conclusión de que cada sustancia tiene una naturaleza que le confiere mayor o menor conductividad. Esta mayor o menor conductividad, o contemplado desde otro punto de vista, esta mayor o menor resistencia característica de cada sustancia se conoce como RESISTENCIA ESPECÍFICA o también como RESISTIVIDAD. Este parámetro se representa con la letra griega ρ (rho minúscula) y podemos definirlo como la resistencia que ofrece una sustancia cuando tiene la unidad de longitud y la unidad de sección a una temperatura de cero grados centígrados (ya hemos dicho al principio de este artículo que la temperatura influye en la resistencia que oponen los cuerpos al paso de la corriente eléctrica), aunque en la práctica la mayoría de las veces la temperatura se da a 20 o 25 grados centígrados. El coeficiente de resistividad se especifica en ohmios por metro.

He aquí el coeficiente de resistividad de algunos materiales a 20 grados centígrados de temperatura: para la plata 0,016 ohm/m, para el cobre 0,017 ohm/m, para el aluminio 0,028 ohm/m, para el cinc 0,056 ohm/m, para el hierro 0,105 ohm/m, platino 0,106 ohm/m, oro 0,024 ohm/m, niquel 0,1 ohm/m, estaño 0,139 ohm/m, mercurio 0,942 ohm/m, plomo 0,204 ohm/m, carbón 50 ohm/m, latón 0,08 ohm/m. Analicemos los otros dos puntos anteriores:

La longitud. Es del todo lógico pensar que cuanto mas largo sea un conductor mayor camino deberán recorrer los electrones y por lo tanto mas obstáculos tendrán que sortear. Los roces que sufrirán los electrones libres serán mayores y por lo tanto la resistencia aumentará. Para calcular la resistencia de un conductor el factor longitud siempre se da en metros.

La sección o grosor. Es fácil adivinar que, tal como al aumentar la longitud del conductor aumenta su resistencia porque aumentan los obstáculos a sortear, al aumentar su sección también aumentan los "huecos" por los que los electrones pueden "colarse". Las posibilidades de roce disminuyen en este caso ya que los electrones disponen de mas sitio por donde pasar. Es como cuando circulamos por una autopista con mucho tráfico; cuanto más carriles tenga mas fluido y rápido será el tráfico a su través ¿no es cierto?. La sección de un conductor se da siempre en milímetros cuadrados.

Una vez que hemos dejado claro lo anterior, podemos dar la fórmula para calcular la resistencia (expresada en ohmios) de un conductor en función de su resistividad, de su longitud y de su sección:

Como ya hemos dicho y ahora hacemos hincapié, al aplicar esta fórmula para el cálculo de la resistencia de un conductor debemos de utilizar la longitud "L" en metros y la sección "s" en milímetros cuadrados. El resultado lo vamos a obtener en ohmios, que es la unidad de resistencia eléctrica. La definición de ohmio acordada internacionalmente y de forma estandarizada (mas adelante hablaremos de la definición técnica que tiene que ver con la d.d.p. y la intensidad de corriente) es la siguiente:

Un ohmio es la resistencia que presenta al paso de la corriente una columna de mercurio de 106,3 centímetros de longitud y una sección de 1 milímetro cuadrado cuando esta se encuentra a una temperatura de cero grados centígrados y a una presión atmosférica considerada normal

También a nivel internacional, el ohmio se representa con la letra griega Ω (omega mayúscula) y como la mayoría de las unidades utilizadas en electrónica tiene sus múltiplos y submúltiplos. Los mas utilizados son el kilohmio (KΩ) que corresponde a 1000 ohmios, el megaohmio (MΩ) que es un millón de ohmios, el miliohmio (mΩ) que es una milésima parte de ohmio y por último el microhmio (µΩ) que es una millonésima parte de ohmio.

Al hablar de ohmios no podemos terminar este artículo sin decir ni una palabra del hombre que dio el nombre a esta unidad de medida. Georg Simon Ohm fué un físico y matemático alemán que se le conoce principalmente por sus trabajos con las corrientes eléctricas. Desarrolló una de las leyes mas utilizadas en el cálculo eléctrico y electrónico, la famosa ley de Ohm. Pero de esto hablaremos en el siguiente artículo. Nos vemos allí.

 
C O M E N T A R I O S   
RE: La resistencia eléctrica

#3 jose oliveros » 20-07-2018 22:20

Los temas explicados tienen una gran información y muy comprensibles les felicito por su forma didactica saludos

La resistencia eléctrica

#2 BHW » 15-04-2017 15:01

This page certainly has all the information I needed concerning this subject and didn't know who to ask.

RE: La resistencia eléctrica

#1 regina » 23-01-2011 21:39

muy bien explicado, resumido,claro y practico. tengo 20 años, estudio ingenieria, y aunque no crean todavia la forma didactica me es atractiva para el comprendimiento de los temas. de todos modos quisiera saber por qué razón la temperatura modifica la resistencia, ¿es por la agitacion de los electrones?
gracias

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.