Acceso



Registro de usuarios
Otros Temas Interesantes
Contáctenos
Teoría
El divisor de tensión visto graficamente

"Una imagen vale más que mil palabras". Así reza el famoso axioma del refranero español, el cual parece provenir de un antiguo proverbio chino que, traducido al castellano, diría algo así como "el significado de una imagen puede expresar diez mil palabras".

En cualquier caso, este precepto muestra el potencial que puede llegar a tener una ilustración para transmitir, explicar o comunicar determinados aspectos de algo. Y precisamente esa es nuestra pretensión con la publicación de este artículo.

Pongamos un ejemplo de lo que te estamos diciendo... ¿Como transmitirías a otra persona la belleza y magnificencia de una aurora boreal?. Seguro que te resultaría muy complicado. Sin embargo, y dejando de lado la maravillosa sensación de verla in situ, si le enseñas una foto ya tendrás gran parte del trabajo realizado.

Con este artículo queremos enseñarte a resolver un divisor de tensión resistivo mediante un gráfico de coordenadas cartesianas. Es muy posible que de esta manera te quede mucho más claro en la mente el funcionamiento de este tipo de circuitos. Además, será un primer paso para la resolución por este mismo medio de circuitos más complicados que incluyan componentes activos y para el estudio de sus curvas características.

¡Vamos allá...!

Leer más...
Noticias
Aprende a manejar el polímetro digital

En vista de todos los visitantes de nuestro blog que nos escriben haciendonos preguntas sobre el uso correcto del polímetro digital nos hemos decidido a crear un completo curso sobre este tema en el que tiene cabida tanto la información enfocada a los que empiezan a usarlo como aquella destinada a los que tienen conocimientos más avanzados de electrónica.

La obra tiene una extensión de más de 200 páginas y comienza con temas muy elementales, como mediciones de tensiones en pilas y baterias, para aquellos que nunca han tenido un polímetro entre sus manos.

Poco a poco el nivel técnico va aumentando, de manera que el lector irá aprendiendo casi sin darse cuenta a manejar esta herramienta de forma diestra, asimilando paulatinamente aquellos conocimientos que a lo largo de los años han ido adquiriendo los profesionales de la reparación eléctrica y electrónica.

Leer más...
Radioaficionados
Montar una antena de móvil (I)

A cuantos les ha ocurrido alguna vez que habiendo comprado una emisora de C.B. o VHF ha necesitado montar la antena en su automóvil. Pero... ¿Quién puede hacerlo con garantía de éxito?. Resulta que montar la dichosa antena parece ser algo relativamente fácil, pero luego viene algo que es más difícil que la instalación propiamente dicha... ¡El ajuste!.

Efectivamente, el ajuste de una antena montada en un automóvil a veces da muchos quebraderos de cabeza por diferentes razones. Muchos son los que lo han intentado y no lo han conseguido. Sus comentarios, después de la instalación, son generalmente estos: "Mi equipo solo tiene un alcance de unos cientos de metros, no aleja", "Recibir si que recibo, pero a mi no me escuchan", "Cuando llevo un rato intentando modular y toco la emisora... ¡casi me quemo!"... y cosas por el estilo. ¿Te ha ocurrido esto a tí en alguna ocasión?

¿Que te parecería si alguien te explicara exactamente como debes montar y posteriormente ajustar una antena? Aquí en "radioelectronica.es", y leyendo atentamente este artículo, estamos seguros de que serás capaz de montar correctamente una antena de radioaficionado en tu coche, o en el de un amigo, y posteriormente ajustarla a la perfección para que tu equipo de radio rinda al máximo posible sin calentarse más de lo necesario. No solo la recepción de tu emisora será buena, sino que cuando emitas con ella lo hará a las mil maravillas. ¡La única pega es que cuando aprendas todos querrán que le montes la suya!. ¿Te gusta la idea?... Pués sigue leyendo.

Leer más...
Miscelanea
Sencillo VU-Meter a diodos LED

Lejos quedan aquellos tiempos en los que todos los medidores, y al decir todos me refiero a TODOS, estaban construidos mediante un galvanómetro y la lectura se realizaba con una aguja que parecía deslizarse al recorrer una escala graduada.

A decir verdad, para aquellos que en cierta manera somos de "la vieja escuela", los referidos medidores, midieran lo que midieran, tenían un encanto muy especial y podría decirse que sentimos "morriña" cuando los recordamos, como diría un gallego al estar lejos de su tierra y escuchar el sonido de una gaita.

Pero llegaron los diodos LED y se hizo la luz. Desde entonces, son muchos y muy variados los VU-Meters, vúmetros o medidores de unidades "VU" (del inglés Volume Unit) que se han desarrollado incorporando este componente electrónico, sobre todo usando la tecnología de la integración.

Pero en este artículo no vamos a publicar la información técnica para construir uno de estos instrumentos con los clásicos circuitos integrados UAA170 o UAA180 ni con cualquier otro. Tampoco vamos a enseñarte a conectar esas "barritas" LED con diferentes diseños. ¡Con ellas practicamente lo tienes todo hecho!.

En este artículo vamos a enseñarte como construir un VU-Meter LED con componentes discretos. ¡Dale ya al "Leer completo..." para saber más!.

Leer más...
Práctica
Monitor para fusible mejorado

En un artículo anterior de nuestro blog ya abordamos un montaje titulado "Indicador de fusible fundido" mediante el cual tuvimos la oportunidad de estudiar el multivibrador astable.

Posteriormente publicamos otro artículo titulado "Monitor para fusible", en el que presentábamos un circuito mucho más simple que el primero, que iluminaba un led cuando el fusible fundía.

Sin ánimo de ser insistente, os queremos presentar ahora este otro monitor algo más sofisticado que el segundo y menos complicado que el primero, mediante el cual podemos saber de un vistazo si nuestro aparato electrónico está recibiendo la alimentación adecuada, o por contra, está interrumpida por culpa de un fusible defectuoso.

En esta ocasión usaremos un doble diodo LED con cátodos comunes. El encendido del LED de color verde (¡PERFECTO!) nos indicará el funcionamiento correcto del dispositivo, mientras que si el LED que luce es el de color rojo (¡ALARMA!) querrá decir que el fusible está interrumpido.

Debido a la extremada sencillez del circuito creemos que merece la pena integrarlo en alguno de nuestros montajes, según consideremos o no la necesidad o conveniencia de que incorpore la mencionada indicación.

Clica en "Leer completo..." para ver más detalles.

Leer más...
Teoría
El receptor elemental (VI)

Una vez que hemos visto qué es un condensador y cual es su funcionamiento tanto en circuitos de corriente continua como en circuitos de corriente alterna, pasamos a ver que papel juega este componente electrónico en el selector de frecuencias de nuestro receptor elemental.

Ya hemos mencionado que el selector de frecuencias de nuestro sencillo receptor lo forman dos componentes: una bobina y un condensador. A estas alturas conocemos ambos elementos y, básicamente y de forma aislada, sabemos como funcionan. Ahora nos toca profundizar un poco en el comportamiento de los mismos cuando se montan juntos, formando ambos el corazón del selector de frecuencias de nuestro receptor.

Es verdad que hemos comentado que lo que ocurre en este tipo de circuitos es algo un tanto complejo, pero esto no va a impedir que, mediante varios ejemplos y con algunas ilustraciones, conozcamos los efectos que se producen cuando bobina y condensador hacen su trabajo particular de seleccionar señales de R.F. en el receptor que estamos estudiando. ¿Te apetece seguir?.

Leer más...
Noticias
Versión 10.5.0.310 de Coil32

Presentamos la nueva y última versión a fecha de hoy (10.5.0.310) del software de cálculo de bobinas y circuitos resonantes LC "Coil32".

Como en la versión anterior, la interface está debidamente traducida al castellano por nosotros, ya que la traducción que incorpora la versión original está plagada de errores e inexactitudes.

En esta versión se ha incorporado entre otras cosas el cálculo de bobinas multicapas, las cuales podrán o no incluir capas intermedias aislantes.

Leer más...

El receptor elemental (II)

El primer receptor de radio que describimos en artículos precedentes, y el más elemental, era el compuesto únicamente por el sistema antena-tierra, el detector y el auricular ¿lo recuerdas?. También te advertimos de los inconvenientes de este receptor: falta de sensibilidad y falta de selectividad. Sin embargo, este tipo de receptor podría funcionar perfectamente en aquellos lugares donde tengamos cerca una emisora de radio potente.

Efectivamente. A pesar de su poca sensibilidad, si por la proximidad de la emisora estamos en presencia de una fuerte señal de R.F., esta será suficiente para activar el auricular sin necesidad de ninguna amplificación.

La propia falta de sensibilidad de nuestro receptor se convierte en una buena noticia, ya que eso evitará que emisoras más lejanas, y por lo tanto recibidas con menor intensidad, interfieran con la que pretendemos oir ya que nuestro receptor no se enterará de que existen, y por lo tanto no se mezclarán con la primera.

Como resulta que ya conocemos los pormenores del sistema antena-tierra y también conocemos el funcionamiento del auricular, solo nos queda estudiar como funciona el detector para completar nuestro receptor más elemental. Todo a continuación.

Las frecuencias de Onda Media van aproximadamente de 500 a 1600 KHz. y la modulación, como ya hemos visto en otros artículos, se realiza variando la amplitud de la onda portadora. Las ondas electromagnéticas inducen en la antena pequeñas corrientes de R.F. moduladas en amplitud que, una vez que llegan y ejercen su función en el receptor, retornan y siguen su camino usando la toma de tierra.

Supongamos que conectamos nuestro auricular directamente al sistema antena tierra. Para redondear los cálculos, imagina que tratamos con una señal de R.F. de 1000 KHz., o lo que es lo mismo, de 1 MHz. (Megahercio). Resulta que esa es la frecuencia de la emisora que tenemos muy cerca de casa y que nos llega con una potencia bastante importante.

Con una señal de tal frecuencia llegando al auricular, variando su polaridad cada millonésima de segundo, la lámina del auricular se vería atraída y repelida un millón de veces cada segundo por el imán. Es cierto que la intensidad de las corrientes de R.F. variarían con la amplitud de la señal de B.F. transmitida, pero eso no quita que la lámina se vería atraída por el imán en un momento dado, que una millonésima de segundo después sería repelida y así sucesivamente. Resumiendo, la lámina tendría que vibrar con una frecuencia de 1 MHz. y la amplitud de estas vibraciones variaría con la señal de B.F. que acompaña a la portadora. ¿Que crees? ¿Oíríamos o no esas vibraciones?.

Tenemos que responder con un contundente, tajante y categórico NO, y esto es así por varias razones que vamos a explicar a continuación. En primer lugar, y suponiendo que la lámina de nuestro auricular llegase a vibrar, esas vibraciones de 1.000 KHz (o lo que es lo mismo de 1 MHz) no excitarían nuestro tímpano porque no caen dentro de la gama de frecuencias audibles, las cuales como máximo llegan a los 16 KHz.

En segundo lugar, es completamente imposible que la lámina vibre a esa frecuencia por muy bueno que sea nuestro auricular, ya que las vibraciones mecánicas están limitadas por la ley de la inercia, lo que nos indica que la lámina se movería menos que el ojo derecho del detective Colombo.

Aún hay una tercera razón por la que es imposible que la lámina del auricular se mueva. Efectivamente, la bobina (o bobinas) del auricular son autoinducciones que presentan una oposición muy alta al paso de la corriente alterna, siendo esta oposición mayor cuanto más elevada sea la frecuencia. Si el auricular se las tiene que ver con señales alternas de frecuencias del orden del Megahercio, como es el caso, esa oposición es tan grande que prácticamente no circula ninguna corriente por él.

Todo lo anterior nos hace ver que necesitamos algo para recuperar nuestra señal de audio, la cual la tenemos cabalgando sobre la portadora de R.F. de 1.000 KHz. A ese algo le llamamos DETECTOR o DEMODULADOR y es lo que vamos a ver a continuación.

EL DETECTOR
Supongamos que tenemos la posibilidad, mediante un dispositivo especial, de eliminar una de las mitades de la señal de R.F. antes de enviarla al auricular. Este dispositivo se intercalaría en nuestro circuito y solo permitiría el paso de la corriente en un sentido, mientras que si la corriente pretende atravesarlo en sentido contrario el dispositivo se lo impediría. Este dispositivo es el DETECTOR y lo vamos a representar con el símbolo que puedes ver en la ilustración. ¿Que ocurriría entonces?.

La verdad es que la cosa cambia de forma radical cuando introducimos el detector en nuestro circuito. Si antes teníamos una corriente alterna de R.F. que llegaba al auricular pero que no conseguía nada en absoluto, ahora tenemos algo muy distinto.

Fíjate que con la introducción del detector ahora solo llegan al auricular uno de los picos de la corriente de R.F., bien solo los positivos o bien solo los negativos, dependiendo de la posición en que pongamos el detector.

Es decir que, por ejemplo, dicha corriente solo podrá pasar desde la antena hacia la toma de tierra pero no al contrario como lo hacía antes de colocar el detector. ¿Coges el punto?.

Si suponemos la posición de dicho detector según la figura adjunta, al auricular solo le llegarán los impulsos positivos tal y como se indica en la ilustración.

Ahora la señal que le llega al auricular no es una corriente alterna, sino una corriente pulsante de R.F., eso sí, cuyas amplitudes varían en consonancia con la señal de audio que recogió el micrófono en la emisora.

Efectivamente, aunque aún no tenemos lo que en principio pretendíamos, que es nuestra querida señal de audio o B.F. (Baja Frecuencia), la corriente pulsante de R.F. que hemos obtenido gracias a la detección producirá el mismo efecto en el auricular que si le hubiéramos aplicado dicha señal de audio. No obstante, posteriormente veremos como mejorar la detección de manera que la señal de B.F. que obtendremos será idéntica a la original.

Por ahora contentémonos con saber que, aún sin tratarse de una señal de audio auténtica, sino de una serie de pulsos de R.F. cuyas amplitudes siguen a la señal de B.F. original, el efecto producido es prácticamente el mismo que si le hubiéramos aplicado al auricular la señal de B.F. directamente. El motivo lo explicamos a continuación.

Al someter al auricular a esta serie de impulsos del mismo sentido, pero cuya amplitud se va modificando en función de la señal de audio, la intensidad de la vibración de la membrana cambia dependiendo de la magnitud de dicha amplitud y consecuentemente de la amplitud del sonido original, por lo que acaba reproduciendo dicho sonido tal cual se creó ante el micrófono de la emisora.

Para que lo puedas entender mejor, imagina que la señal de R.F. no está modulada, es decir, que no contiene información de sonido alguno. En este caso su amplitud será constante por lo que, una vez detectada, la amplitud de los pulsos obtenidos también será constante, bien negativos o bien positivos dependiendo de como conectemos el detector pero todos esos impulsos serán idénticos y de amplitud constante.

Si aplicamos los impulsos anteriores al auricular su membrana se desplazará permanentemente hacia afuera o hacia adentro, dependiendo de si los impulsos son negativos o positivos, y el auricular no emitirá ningún sonido. Es como si le estuviéramos aplicando a la membrana una serie de golpes rapidísimos, con una velocidad tal que dicha membrana no tuviera apenas tiempo de retroceder cuando de nuevo recibe otro golpe exactamente igual que el anterior, y así sucesivamente, por lo que permanentemente queda desplazada hacia adentro debido a la rapidez de los golpes recibidos. Tienes aquí una simulación gráfica de lo que te acabo de explicar.

Sin embargo, la cosa cambia cuando la señal detectada está modulada en amplitud. En este caso la curvatura de la lámina del auricular irá cambiando en consonancia con la amplitud de los impulsos. Es como si los golpes que le estuviesemos aplicando a la membrana no tuvieran la misma fuerza unos que otros y por lo tanto la curvatura producida sería mayor o menor en función de la fuerza de dichos golpes. Los impulsos eléctricos que recibe el auricular, aunque son todos del mismo sentido no tienen la misma amplitud o intensidad, por lo que la curvatura que producen en su lámina no es constante como en el caso anterior de la portadora no modulada, sino que varía en función de la intensidad de dichos impulsos, reproduciendo el sonido original que se creó ante el micrófono de la emisora. También en este caso tienes aquí una simulación gráfica de lo que te queremos decir.

Ahora nuestro auricular no intenta reproducir una corriente alterna de alta frecuencia, ya que la hemos despojado de sus picos negativos. Ahora lo que reproduce, mediante los sucesivos impulsos de la onda detectada, es la señal de audio de B.F. que modula a la de R.F. y que corresponde al sonido original.

A este respecto hemos de decir sobre estos impulsos que no podemos llamarlos impulsos de "corriente alterna" como en el caso de la señal de R.F. completa sin detectar, ya que solo tienen polaridad positiva y las corrientes que producen solo circulan en un sentido. En realidad, la señal alterna de R.F. la hemos convertido con la detección en una señal que produce "corriente continua" de forma interrumpida y a intervalos regulares. Es el mismo tipo de corriente que, ilustrativamente, produciría una batería conectada a un interruptor que pudiéramos abrir y cerrar a una velocidad vertiginosa. Este tipo de corrientes reciben el nombre de "CORRIENTES CONTINUAS PULSANTES".

Volviendo al circuito de nuestro receptor, al aplicarle al auricular una CORRIENTE CONTINUA y no una corriente alterna, la autoinducción que presenta su bobina es bastante menor que la que encontramos al aplicarle la señal alterna de R.F. sin detectar. Por esta razón, una vez la señal ha sido detectada, las corrientes que produce en el circuito si pueden pasar a través del auricular y hacer su efecto.

Hasta ahora hemos hablado del detector como si se tratara de un único y exclusivo componente electrónico. Dicho componente electrónico recibe el nombre de "DIODO". Sin embargo hemos de puntualizar que, aunque en la actualidad es así, a lo largo de la historia de la radio se han utilizado infinidad de medios para lograr la detección, y no todos a base precisamente de diodos. Uno de los primeros detectores que se usaron, a modo de diodo, fué el llamado "DETECTOR DE GALENA", del que hablaremos en el próximo artículo.

De todas formas, y como hemos dicho anteriormente, el diodo es el detector de AM más utilizado universalmente, con muchísima diferencia, por lo que nos extenderemos más en él que en otros tipos de detectores. Pero eso será a partir del próximo artículo ¿Te parece bien?. Pues... ¡¡hasta entonces!!.

 
C O M E N T A R I O S   
El receptor elemental II

#1 Juan Carlos López Duque » 30-05-2016 23:32

Han hecho ustedes un trabajo encomiable. Sus esfuerzos por clarificar principios físicos muy complejos es verdaderamente envidiable.
Reciba mi más sincera enhorabuena... Y sigo leyendo.

El JuanC++

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +