Acceso



Registro de usuarios
Contáctenos
Teoría
La resistencia eléctrica

Seguramente te habrás dado cuenta de que cada vez que hemos hablado de circulación de la corriente electrica hemos dicho que lo hace a través de un conductor o un hilo conductor. A nadie se le ocurriría hacer un circuito con hilo de nylon porque jamás conseguiría que la corriente eléctrica circulara a través de él. Al hablar de hilos conductores nos referimos a hilos o cables metálicos ya que son este tipo de materiales los que mejor conducen la corriente eléctrica. De hecho existen materiales que permiten el paso de la corriente a su través sin apenas ninguna dificultad. Estos materiales son los llamados CONDUCTORES y la plata se lleva la palma de todos ellos siendo el metal mejor conductor que existe.

Sin embargo, el metal conductor más utilizado en instalaciones eléctricas no es la plata, como cabe suponer debido a su alto precio, sino el cobre. Sin ser tan buen conductor como la plata, su precio mas bajo y su gran ductilidad (propiedad de poder deformarse de forma continuada sin romperse) que permite obtener hilos muy finos, hacen del cobre el conductor eléctrico por excelencia en la mayoria de las industrias. En este artículo vamos a hablar de los buenos y los malos conductores de la electricidad, pasando por los que están en la zona intermedia. ¿Nos sigues?.

Leer más...
Otros Temas Interesantes
Noticias
Liberado artículo del regulador PWR para SS3900

Comunicamos a todos nuestros visitantes que, debido a la gran cantidad de mensajes recibidos con preguntas acerca de nuestro artículo sobre la instalación de un regulador de potencia (PWR) AM-FM para la Superstar 3900, nuestra administración ha decidido hacer dicho artículo de libre descarga y distribución, por lo que los visitantes suscritos a nuestro blog pueden descargarlo de este link.

Esperamos que con esto podamos ayudar a muchas de aquellas personas que nos han pedido detalles sobre este tema.

Leer más...
Radioaficionados
Receptor a reacción para Onda Corta (II)

Continuamos con la segunda parte de este interesante tema que trata de la construcción de un sensible receptor regenerativo con escucha en altavoz, constituido por solo dos componentes activos; 1 transistor y 1 circuito integrado.

A pesar de incorporar tan pocos componentes estamos seguros que, aquellos que se aventuren a construirlo, obtendrán una tremenda satisfacción cuando al ponerlo en marcha puedan oir una gran cantidad de emisoras, incluyendo aquellas de paises muy alejados del nuestro.

Una vez que llevemos a la práctica este circuito, montando en su correspondiente placa de circuito impreso todos los componentes, podremos instalarlo en el interior de una caja a la que habremos añadido los controles necesarios para su uso y manejo en las mejores condiciones, e incluso fabricarle una bonita carátula, lo que le dará un excelente aspecto.

El circuito puede alimentarse con pilas corrientes ya que su consumo ciertamente es muy bajo. De esta manera tendremos la oportunidad de llevarlo con nosotros a cualquier parte y lo convertiremos en un equipo portable, aunque si pensamos usarlo únicamente en casa quizás sea mejor incorporarle una pequeña fuente de alimentación para conectarlo a la red de distribución eléctrica.

En el artículo anterior ya explicamos el principio de la "reacción" o "regeneración" de señales de alta frecuencia. No obstante, aún no hemos dicho nada sobre el funcionamiento detallado de nuestro receptor. Vayamos al grano entonces.

Leer más...
Miscelanea
Sencillo VU-Meter a diodos LED

Lejos quedan aquellos tiempos en los que todos los medidores, y al decir todos me refiero a TODOS, estaban construidos mediante un galvanómetro y la lectura se realizaba con una aguja que parecía deslizarse al recorrer una escala graduada.

A decir verdad, para aquellos que en cierta manera somos de "la vieja escuela", los referidos medidores, midieran lo que midieran, tenían un encanto muy especial y podría decirse que sentimos "morriña" cuando los recordamos, como diría un gallego al estar lejos de su tierra y escuchar el sonido de una gaita.

Pero llegaron los diodos LED y se hizo la luz. Desde entonces, son muchos y muy variados los VU-Meters, vúmetros o medidores de unidades "VU" (del inglés Volume Unit) que se han desarrollado incorporando este componente electrónico, sobre todo usando la tecnología de la integración.

Pero en este artículo no vamos a publicar la información técnica para construir uno de estos instrumentos con los clásicos circuitos integrados UAA170 o UAA180 ni con cualquier otro. Tampoco vamos a enseñarte a conectar esas "barritas" LED con diferentes diseños. ¡Con ellas practicamente lo tienes todo hecho!.

En este artículo vamos a enseñarte como construir un VU-Meter LED con componentes discretos. ¡Dale ya al "Leer completo..." para saber más!.

Leer más...
Práctica
El electroscopio

Llegó la hora de realizar nuestra primera práctica electrónica. Una vez que hemos estudiado la electricidad estática estaría bien ver los efectos que produce esta mediante un artilugio construido por nosotros mismos.

En este artículo vamos a explicar que es un electroscopio y además vamos a fabricar uno con materiales muy comunes a practicamente costo cero. Siendo un instrumento sumamente fácil y económico de construir, con él podremos ver los efectos de la electricidad estática estudiados en el artículo anterior.

William Gilbert (1544-1603), médico y físico inglés, fué la persona que construyó por primera vez un electroscopio para realizar experimentos con cargas electrostáticas. Acérrimo defensor de la teoría copernicana, sus mayores aportaciones a la ciencia tratan sobre electricidad y magnetismo. Al mostrar que el hierro a altas temperaturas (al rojo) no presenta alteraciones magnéticas, se adelantó a los modernos descubrimientos de Curie. Aunque actualmente el instrumento inventado por Gilbert no es más que una pieza de museo, existiendo herramientas muchísimo mas modernas para estos menesteres, resulta muy instructiva su construcción. Prepárate pués para empezar a experimentar con la electricidad estática.

Leer más...
Teoría
Las válvulas de vacío III

Para continuar con los artículos relativos a las válvulas de vacío, iniciaremos este último hablando sobre un par de aplicaciones que en su dia tuvieron los diodos termoiónicos, aplicaciones relacionadas por supuesto con la radio.

Posteriormente, en el siguiente artículo, continuaremos repasando un poco el principio físico por el que se rige el funcionamiento de otra válvula termoiónica, el triodo, para acabar mencionando el protagonismo que años atrás tuvieron algunas otras válvulas de más electrodos.

Artículos cortos particularmente desde nuestro punto de vista, no en extensión pero sí en desarrollo, ya que existe mucha tela que cortar en este aspecto. Sin embargo, los reduciremos a la mínima expresión posible dada la actual inexistencia de circuitería práctica que incluya este tipo de componentes electrónicos. Pasa dentro, por favor ...

Leer más...
Noticias
Receptores de OM. Información técnica en PDF.

Comunicamos a todos nuestros suscriptores que se encuentra disponible en la zona de descargas la información técnica adicional en formato PDF relativa al artículo publicado el pasado 6 de agosto titulado "Como mejorar el receptor de galena".

En dicho PDF, tal y como transmitimos a nuestros visitantes en su dia, encontrarán todos los detalles para la fabricación de los diferentes modelos de receptores tratados en el mencionado artículo.

Además, y como adelanto a una próxima reseña que dedicaremos a otro tipo de receptor más avanzado, incluimos en el documento la información técnica relativa a este receptor.

Se trata de un equipo que no necesita tomas de antena exterior ni de tierra y, por lo tanto, es completamente portátil y autónomo. Su reducidas dimensiones y también su sencillez de construcción harán las delicias de todo radioaficionado.

Leer más...

El receptor elemental (III)

Queremos que este artículo cumpla una doble misión. Por un lado seguiremos ahondando en las partes componentes del receptor elemental para ir avanzando poco a poco hacia nuestro destino. Para ello, nos adentraremos en el estudio del diodo como detector y tocaremos los "detectores de galena" tan usados por nuestros abuelos hace años.

Por otro lado, queremos dejar claro algo referente al sentido de la corriente eléctrica, ya que existe cierta confusión al respecto. Muchos dicen que la corriente eléctrica circula desde el negativo hacia el positivo (eso es lo que enseñamos en esta web). Otros, no obstante, dicen que no, que la corriente va desde el positivo hacia el negativo ya que son muchos los tratados de electrónica que enseñan esto último. ¿Tu que crees?. ¿A que lado te inclinas?.

En honor a la verdad debemos decir que, en lo que al estudio de la electrónica se refiere y a excepción de ciertas parcelas determinadas, prácticamente no influye para nada que la corriente fluya en un sentido o en otro. Sin embargo, no está de más aclarar este concepto y explicar por qué motivo parte de la literatura sobre electricidad y electrónica dice una cosa y parte dice otra muy distinta. ¿Te interesa?. Pasa adentro, por favor.

Como ya hemos dicho en el artículo anterior, la detección de una señal de R.F. modulada en amplitud puede llegar a conseguirse por diferentes medios. Sin embargo, el fin siempre es el mismo; despojar a dicha señal de una de sus mitades, bien de los picos positivos o bien de los negativos. El detector más utilizado desde hace muchos años es el diodo, un componente electrónico de dos terminales, del cual ya conocemos su símbolo: una especie de flecha cuya punta está colocada en un pequeño "tope" rectangular.

Como ya hemos aprendido, el diodo deja pasar la corriente solo en un sentido. Todos los tratados sobre electricidad y electrónica coinciden en esto. Sin embargo, no todos concuerdan en cual es el sentido en que el diodo deja pasar la corriente y cual es el sentido en el que la bloquea. Muchos dicen que la corriente pasa en el sentido de la flecha, mientras que otros dicen que al contrario. ¿Por qué esta discrepancia?. ¿A que se debe?.

La explicación la encontramos en un error que cometió Benjamín Franklin allá por el siglo XVIII, al suponer que la corriente eléctrica era un flujo de cargas que se desplazaban por el circuito desde el borne positivo de la bateria hacia el negativo de la misma. A partir de este momento, toda la literatura escrita sobre el tema reflejó este error. Más de un siglo después, la teoría electrónica de la materia (estudiada en los primeros artículos teóricos de esta web) acabó revelando la verdadera naturaleza de la electricidad, y aclaró que los portadores de cargas eléctricas en los metales son los electrones, los cuales tienen carga negativa, y son los únicos que se mueven. De manera que el sentido real de la corriente eléctrica es justamente el inverso al postulado por Franklin.

No obstante, por razones históricas y dado que los resultados prácticos cambian bien poco teniendo en cuenta un sentido u otro, muchos siguen aceptando el sentido de positivo a negativo definido por Franklin como SENTIDO CONVENCIONAL o SENTIDO FIGURADO y lo usan de esta manera en sus enseñanzas. Sin embargo en esta web seguiremos usando el SENTIDO REAL DE LA CORRIENTE ELÉCTRICA, es decir, DE NEGATIVO A POSITIVO mientras no se indique lo contrario. De todas formas, este punto es interesante tenerlo en cuenta cuando lleguemos al estudio de los semiconductores como se verá en su momento.

Por lo tanto, debemos tener claro que LA CORRIENTE REAL A TRAVÉS DE UN CIRCUITO SE DESPLAZA DESDE EL NEGATIVO DE LA BATERIA HACIA EL POSITIVO DE LA MISMA, y en lo que respecta al diodo, la corriente REAL lo atraviesa ENTRANDO POR SU CÁTODO Y SALIENDO POR SU ÁNODO, justo lo contrario de lo que señala la flecha de su símbolo. Con esto aprovechamos para matar dos pájaros de un tiro, ya que no solo hemos dejado claro el sentido real de la circulacíon de la corriente eléctrica en un circuito y en el diodo, sino que además hemos dicho el nombre de las dos partes de que se compone dicho componente electrónico, y por extensión de sus dos terminales (ánodo y cátodo). Una vez que hemos arrojado luz sobre estos puntos continuamos adelante.

LA GALENA Y EL DIODO
Por todo lo expuesto hasta ahora, es evidente que en nuestro receptor elemental necesitamos la colaboración de un diodo para que haga el trabajo de detectar la señal de RF. En la actualidad no existe ningún problema para localizar este componente. Sin embargo, en los albores de la radio, cuando nuestros abuelos (los radioaficionados de entonces) hacían sus pinitos en este hobby, el único diodo existente era el de vacío o termoiónico (el cual tocaremos en próximos artículos). Pero este era un componente de reciente aparición, muy escaso, necesitaba alimentación, era costoso y de difícil localización, por lo que tenían que apañárselas con materiales sencillos y que estuvieran además disponibles sin grandes problemas y al mínimo costo. ¿Como conseguirían el "diodo detector" que les hacía falta para su receptor elemental?.

Los semiconductores aún no habían saltado a la palestra a principios del siglo pasado. No obstante, para entonces los científicos ya conocían las propiedades detectoras (también llamadas rectificadoras) que adquirían dos cuerpos metálicos de distintas características puestos en íntimo contacto, y aunque quizás los usuarios de los primeros receptores no tenían ni idea de este detalle técnico, la cuestión es que éste era el principio de física que usaban en sus experimentos.

El material con el que se obtenía mejores resultados era la llamada GALENA, un mineral cristalizado natural del grupo de los sulfuros (compuesto de plomo y azufre), fácilmente localizable a la sazón. Bastaba un trozo pequeño de galena, el cual se inmovilizaba en un soporte metálico que hacía las veces de "conexión del cátodo", y una aguja que podía ser de bronce (llamada "bigote de gato") que "pinchaba" a la piedra de galena haciendo las veces de "ánodo". Cada cual lo construía como podía con los materiales de que se disponía entonces. ¿Te lo imaginas?. Para los que no se querían complicar mucho, comenzaron a comercializarse receptores completos que incluían un detector de galena en su circuitería, los cuales hoy dia son verdaderas piezas de museo.

Había que tener mucha paciencia y un tacto especial para conseguir que aquel "pseudo diodo detector" funcionara medianamente bien y con un rendimiento aceptable. Además, debido a su alta inestabilidad, con solo moverlo un poco o símplemente cuando transcurría cierto tiempo, aquello dejaba de funcionar y había que buscarle de nuevo a la piedra de galena "el punto" más apropiado a base de "tanteo" puro y duro para que la detección se efectuara decentemente.

En los receptores comerciales fabricados con válvulas de vacío, el detector utilizado era un diodo temoiónico. Pero este componente, además de los inconvenientes que hemos recalcado ya, no era práctico usarlo en un simple y económico receptor, el cual se montaba exclusivamente por pura afición y por su bajo costo.

Al cabo de cierto tiempo llegaron los llamados "diodos de cristal", desbancando a la galena en su supremacía como detector elemental y relegándola a un segundo plano. También llamados "diodos de germanio" o "detectores de germanio", ya que este es el material semiconductor usado en su construcción, estos diodos son seguros, estables y no adolecen de ninguno de los inconvenientes de los detectores de galena y, además, seguían sin necesitar ningún tipo de alimentación. Sin embargo, aunque uno de estos receptores elementales estuviera fabricado con un diodo de cristal en la parte detectora, por extensión y por tradición se le seguía llamando "radio galena", nombre que muchos le asignan aún hoy en dia.

El diodo detector de germanio conserva el mismo principio físico de funcionamiento que el detector de galena. La piedra de galena se sustituye por un minúsculo trocito de germanio, el cual se ha "dopado" (ya veremos más adelante lo que significa esto), al que se le une una pequeñísima "punta" a modo de "bigote de gato" que contacta y presiona al germanio. El conjunto se encierra en una pequeña cápsula de cristal de la que brotan dos terminales de contacto, uno de ellos conectado al germanio y otro a la punta de presión.

Se denomina "CÁTODO" al terminal conectado al germanio y "ÁNODO" al que conecta la punta metálica de presión. La corriente a través de un diodo, sea del tipo que sea, siempre circula por su interior entrando por el cátodo y saliendo por el ánodo. Ya hemos dicho anteriormente cual corresponde a un terminal y a otro en su símbolo gráfico. En el componente físico, podemos distinguir el terminal correspondiente al cátodo porque la cápsula de cristal se marca con una pequeña franja circular que la rodea en uno de sus lados.

Por todo lo dicho hasta el momento, el detector que nosotros usaremos para nuestro receptor elemental será un diodo de germanio, ya que nos ahorraremos muchísimos inconvenientes y ganaremos en seguridad y estabilidad. Además, hoy dia puede resultar muy complicado encontrar en el mercado un cristal de galena natural.

FUNCIONAMIENTO REAL DEL DIODO
Este subtítulo quizás pueda confundir a alguien. ¿Es que quizás lo que te hemos estado enseñando hasta ahora con referencia al diodo no es cierto?. ¡No exactamente!. Verás... Hasta ahora, todo lo que te hemos dicho sobre el diodo sería incuestionable... ¡SI FUERA UN COMPONENTE ELECTRÓNICO PERFECTO!. Pero por desgracia no es así. No existen diodos semiconductores perfectos y todos, absolutamente todos, tienen ciertas deficiencias que a continuación vamos a señalar.

El término "diodo" deriva de los dos vocablos griegos "Di" y "Odo", que significa "dos caminos". Por lo tanto, estamos ante un componente en el que la corriente eléctrica puede circular por dos caminos posibles. Uno de esos caminos es el que va del cátodo al ánodo y el otro es el que va del ánodo al cátodo. Pero... ¿No hemos dicho antes que el diodo solo conduce en un sentido? ¿Por qué ahora hablamos de dos sentidos diferentes?

La respuesta es que... el diodo semiconductor ni es tan buen conductor cuando conduce, ni es tan buen aislante cuando no lo hace. ¿Que no te aclaras?. A ver como te lo explico. Hablemos en términos concretos.

Resulta que cuando al diodo lo polarizamos de manera que SI conduzca, con tensión negativa en el cátodo y positiva en el ánodo, la resistencia que opone al paso de la corriente NO ES DE CERO OHMIOS como cabría esperar si fuese perfecto. Con respecto al diodo de germanio podemos decir que esta resistencia ronda los 100 Ohmios. En este caso decimos que esta es la RESISTENCIA DIRECTA DEL DIODO ya que lo hemos POLARIZADO EN SENTIDO DIRECTO y en estas condiciones podemos decir que SI conduce, o por lo menos presenta una resistencia relativamente baja al paso de la corriente eléctrica.

Cuando al diodo lo polarizamos de manera que NO conduzca, con tensión positiva en el cátodo y negativa en el ánodo, la resistencia que opone al paso de la corriente NO ES INFINITA como la de un aislante perfecto. En el caso del diodo de germanio que estamos tratando, esta resistencia podemos cifrarla sobre 1.000.000 de Ohmios, o lo que es lo mismo, aproximadamente de 1MΩ. En esta otra ocasión decimos que esta es la RESISTENCIA INVERSA DEL DIODO ya que lo hemos POLARIZADO EN SENTIDO INVERSO y en estas condiciones se dice que NO conduce, o más exactamente que su resistencia al paso de la corriente eléctrica es muy elevada.

Ahora tenemos la base para decir que el diodo semiconductor no conduce únicamente en un sentido. La realidad es que EN SENTIDO DIRECTO (de cátodo a ánodo) lo hace con mucha más facilidad y oponiendo bastante menos resistencia (unos 100Ω) que EN SENTIDO INVERSO (de ánodo a cátodo), modo en el que la corriente pasa con mucha dificultad porque el componente opone una resistencia mucho mayor (aproximadamente 1MΩ).

CONSECUENCIAS DE LO ANTERIOR
De esto último podemos deducir que, en nuestro receptor elemental, la señal aplicada al auricular y una vez detectada por el diodo no está completamente exenta de sus pulsos negativos, sino que durante estos impulsos negativos la intensidad de corriente a través del auricular será muchísimo menor que durante los positivos ya que el diodo estará polarizado en sentido inverso. Si representamos gráficamente este detalle, vemos que la señal de R.F. que recibe el auricular aún tiene impulsos negativos, muchísimos más pequeños que los positivos pero existentes al fin y al cabo. La realidad es que el auricular se activa mediante la diferencia de intensidad de unos impulsos y otros, solo que esta diferencia es tan grande que el auricular prácticamente no se entera de que los negativos están ahí.

Huelga decir que si montamos el diodo en la posición inversa, los impulsos con mayor intensidad serán los negativos, y aquellos que resultarán casi imperceptibles serán los positivos. El efecto será el mismo, solo que en esta ocasión los impulsos que activarán el auricular serán los negativos, los cuales son idénticos a los positivos en cuanto a forma y a intensidad. En ambos casos el auricular reproducirá la señal de audio de B.F. exactamente con la misma fidelidad, solo que de un modo (suministrando impulsos positivos) curvará la membrana hacia adentro y colocado del modo opuesto (suministrando impulsos negativos) la curvará hacia afuera.

Hasta aquí las nociones sobre el diodo detector. En el próximo artículo hablaremos del selector. ¡No te lo pierdas!.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.