Acceso



Registro de usuarios
Contáctenos
Teoría
Las ondas (II)

Cuando hemos hablado del movimiento ondulatorio producido por la piedra que cae en el estanque de aguas tranquilas no hemos ahondado demasiado en su mecánica ni en sus peculiaridades. El estudio de tales ondas puede darnos muchas ideas y proporcionarnos algunos conocimientos relacionados con el resto de ondas, incluidas las ondas electromagnéticas utilizadas en las transmisiones de radio. Para un observador poco experimentado, las ondas producidas por la piedra al caer no son mas que unas pocas circunferencias que se dibujan en el agua y que se alejan del punto en donde cayó el pedrusco, aumentando progresivamente de diámetro y disminuyendo de intensidad. Sin embargo, hay mucha más información implícita en esas circunferencias de la que se ve a simple vista, solo que debemos conocer la manera de extraerla para así poder asimilarla.

Una vez dicho esto surgen algunas preguntas relacionadas con lo expuesto hasta el momento. ¿Que métodos podemos utilizar para conocer estas ondas mas a fondo? ¿Que podemos aprender de ellas que aplique también a los demás tipos de ondas? ¿Cuales son sus características principales? Todas las respuestas vienen a continuación.

Leer más...
Artículos Relacionados
Otros Temas Interesantes
Noticias
Versión 10.5.0.310 de Coil32

Presentamos la nueva y última versión a fecha de hoy (10.5.0.310) del software de cálculo de bobinas y circuitos resonantes LC "Coil32".

Como en la versión anterior, la interface está debidamente traducida al castellano por nosotros, ya que la traducción que incorpora la versión original está plagada de errores e inexactitudes.

En esta versión se ha incorporado entre otras cosas el cálculo de bobinas multicapas, las cuales podrán o no incluir capas intermedias aislantes.

Leer más...
Radioaficionados
Receptor a reacción para Onda Corta (III)

Comenzamos aquí el tercer y último artículo de la serie dedicada al receptor a reacción para onda corta.

Una vez que en los dos artículos anteriores hemos desarrollado la necesaria información sobre algunos pormenores y características concretas de este receptor, aplicables también a otros receptores, pasamos a continuación a describir su funcionamiento general y a exponer las especificaciones constructivas para finalizar con éxito su montaje.

Ya hemos explicado el sistema utilizado para regenerar la señal captada por la antena por medio de la realimentación positiva.

También hemos hablado sobre la importancia del circuito resonante de sintonía, de su "Q" o factor de calidad y de la necesidad de una toma intermedia en el mismo para atacar la base del transistor amplificador de RF, de manera que dicho circuito resonante no resulte amortiguado.

El cuidado de estos detalles redundará en una mayor sensibilidad y mejor selectividad de este receptor el cual, no nos cabe ninguna duda, dará muchas alegrias a todos aquellos que acometan su construcción.

En el presente artículo veremos su funcionamiento general punto por punto de manera que al final estaremos en condiciones de contestar cualquier pregunta que se nos formule sobre él. ¡Síguenos!.

Leer más...
Miscelanea
Preamplificador para guitarra eléctrica

¿Te gusta tocar la guitarra eléctrica?. Es posible que hasta seas el afortunado poseedor de una de ellas. Sin embargo, quizás no tengas el equipo de sonido adecuado para oirla con la suficiente potencia y calidad.

Esto último lo decimos porque la mayoría de amplificadores y equipos de audio domésticos del mercado no disponen de una entrada convenientemente adaptada a las características del sonido entregado por este instrumento.

Efectivamente, es habitual encontrar en los amplificadores, e incluso en muchas mesas de mezcla, entradas tipo "AUX", "LINE", "CD", "TUNER" o "PHONO", pero pocos son los que tienen una entrada que indique "GUITAR".

Sabedores de esto, hemos pensado que a muchos de vosotros os interesaría fabricaros un pequeño preamplificador, de funcionamiento seguro y con una elevada calidad, que intercalado entre una entrada auxiliar y el mencionado instrumento os permitirá elevar la señal de este último y aplicarla entonces al equipo del que dispongáis para que el sonido en los altavoces tenga el nivel adecuado.

Os presentamos un circuito que con solo dos transistores BJT, seis resistencias y cinco condensadores os permitirá conseguir este objetivo.

¿Por qué no clicas en "Leer completo..." y compruebas la sencillez del dispositivo?.

Leer más...
Práctica
Detector de polaridad

Uno de los mayores errores que se cometen al enchufar equipos electrónicos a baterías o a fuentes de alimentación de corriente continua es la inversión de polaridad. ¿Te ha ocurrido esto a ti alguna vez al instalar una emisora de radioaficionado en tu automóvil y conectarla a su circuito eléctrico?.

Cuando se da esta circunstancia uno se pregunta... "¿como me ha podido pasar a mi?. No es posible, estoy viviendo un mal sueño, una pesadilla. Yo siempre voy con muchísimo cuidado. Pronto despertaré...". Pero no. Por desgracia no se trata de un sueño sino de una situación real. Has cometido el error más frecuente cuando se manejan equipos electrónicos con alimentación continua exterior; la temida inversión de polaridad.

Para que esto no te vuelva a pasar vamos a enseñarte a construir un sencillo aparato con el que podrás detectar muy facilmente la polaridad de una tensión continua desde 2 hasta 230 voltios aproximadamente. También te indicará, caso de que no se trate de una tensión continua, si dicha tensión es alterna.

Mediante unos diodos LED bicolor este tester te marcará, sin ninguna posibilidad de error, cual es el polo positivo y cual el negativo de una determinada toma de corriente eléctrica o si por contra se trata de una tensión alterna. ¿Te interesa?. Sigue leyendo, por favor...

Leer más...
Teoría
La resistencia eléctrica

Seguramente te habrás dado cuenta de que cada vez que hemos hablado de circulación de la corriente electrica hemos dicho que lo hace a través de un conductor o un hilo conductor. A nadie se le ocurriría hacer un circuito con hilo de nylon porque jamás conseguiría que la corriente eléctrica circulara a través de él. Al hablar de hilos conductores nos referimos a hilos o cables metálicos ya que son este tipo de materiales los que mejor conducen la corriente eléctrica. De hecho existen materiales que permiten el paso de la corriente a su través sin apenas ninguna dificultad. Estos materiales son los llamados CONDUCTORES y la plata se lleva la palma de todos ellos siendo el metal mejor conductor que existe.

Sin embargo, el metal conductor más utilizado en instalaciones eléctricas no es la plata, como cabe suponer debido a su alto precio, sino el cobre. Sin ser tan buen conductor como la plata, su precio mas bajo y su gran ductilidad (propiedad de poder deformarse de forma continuada sin romperse) que permite obtener hilos muy finos, hacen del cobre el conductor eléctrico por excelencia en la mayoria de las industrias. En este artículo vamos a hablar de los buenos y los malos conductores de la electricidad, pasando por los que están en la zona intermedia. ¿Nos sigues?.

Leer más...
Noticias
Transmisor telefónico espía sin pilas

A veces, los espías tienen que permanecer durante largos periodos investigando a una persona concreta. Si necesitan oir y/o grabar sus conversaciones telefónicas normalmente les pinchan la linea, pero esto no siempre resulta fácil por diferentes motivos.

La utilización de los clásicos micrófonos transmisores está limitada por la duración de la batería, por lo que si necesitan investigar a esa persona durante semanas o incluso meses, la carga eléctrica de la mencionada batería no podrá aguantar tanto tiempo.

Esos problemas desaparecen con el uso del dispositivo que describimos en este artículo.

Este transmisor no necesita de ninguna energía externa para funcionar, alimentándose de la propia linea telefónica. Se activará siempre en el momento en que se reciba o se realice una llamada telefónica.

No puedes perderte este artículo, con video incluido.

Clica en "Leer completo..." ya.

Leer más...

Cálculo de circuitos con diodos LED

Casi todo el mundo sabe de que se trata cuando se habla de diodos LED, esos pequeños componentes electrónicos que tienen la facultad de iluminarse cuando son atravesados por una corriente eléctrica. Además de que algunos modelos pueden llegar a desarrollar un considerable nivel lumínico el gasto energético que ocasionan es muy pequeño, por lo que en la actualidad ya han aparecido infinidad de lámparas domésticas basadas en ellos para casi todo tipo de aplicaciones.

Sin embargo, y centrándonos en los diodos LED estándar de 3 y de 5 milímetros usados en electrónica, muchos son los que se preguntan como se conectan a una pila o a una fuente de alimentación, quizás para usarlo como testigo de funcionamiento de algún equipo, o para hacer algún trabajo manual del colegio.

Hemos oido comentarios de todo tipo al respecto. Algunos dicen que el LED se conecta a la pila sin más, ya que piensan que funcionan con un determinado voltaje, algo parecido a las lamparitas de las linternas. Otros piensan que hay que poner dos o tres diodos más en serie, porque de lo contrario pueden "fundirse". Algunos no concretan y dicen que además del diodo LED y la pila o batería, el circuito debe de incorporar algún otro componente que lo proteja. ¿Que crees tu?.

El presente artículo tratará de arrojar luz sobre este tema, el cual en muchas ocasiones no está claro en la mente de algunos.

Aunque para conocer el procedimiento de conexión de un diodo LED a una batería no nos hará falta, sin embargo en un principio aclararemos como produce su luz este componente electrónico. Esto lo entenderás mejor cuando estudiemos los semiconductores, por lo que ahora no vamos a profundizar en ello. Solo tocaremos el tema superficialmente dejando para más adelante el verdadero estudio de estos dispositivos.

COMO PRODUCE LUZ UN LED
En la conducción electrónica de cualquier diodo o dispositivo semiconductor intervienen dos portadores de carga diferentes. A uno de ellos ya lo conocemos, son los famosos "electrones" los cuales tienen carga negativa.

Por otra parte están los "huecos" que, sin ser una partícula elemental como el electrón, se le considera como tal, aunque a nuestro entender sería mucho mejor llamarle pseudo-partícula dada su naturaleza.

Dichos huecos son los espacios vacíos que han quedado en aquellos átomos de la estructura cristalina del semiconductor que han perdido electrones, normalmente en su última órbita. Teniendo en cuenta que un hueco es la ausencia de un electrón, se considera que su carga es positiva.

La corriente electrónica en el interior de un semiconductor, por lo tanto, está formada por un desplazamiento de electrones en un sentido y, al mismo tiempo, un desplazamiento de huecos en sentido contrario al de electrones. Esto último no necesariamente indica la existencia de electrones libres en el cristal semiconductor, como veremos en artículos posteriores.

Ahora sería bueno recordar lo que dice la "ley de conservación de la energía", la cual estudiamos en su momento en otro de nuestros artículos: "La energía no se crea ni se destruye, solo se transforma". Ten presente esta enunciado en los próximos párrafos.

Cuando aplicamos un campo eléctrico (que es una forma de energía) a un semiconductor y por ello un electrón logra "escapar" de su átomo, dicho electrón comienza a moverse buscando el hueco más próximo en la estructura del material, y pasa a tener un nivel de energía superior al que tenía cuando estaba "ligado" a su átomo. Se puede decir que hemos transmitido a ese electrón parte de la energía del campo eléctrico aplicado al material semiconductor, y por ello el electrón se mueve.

Por lo contrario, cuando ese electrón encuentra un hueco en otro átomo y lo ocupa (a esto se llama recombinación), cesa su movimiento y pierde la energía que ganó en un principio. En ese momento la energía que tenía el electrón no vuelve al campo eléctrico aplicado al material semiconductor, sino que se transforma en calor y en luz.

En un diodo rectificador normal solo notamos el calor, ya que el material semiconductor del que está fabricado (generalmente silicio) es opaco (no transparente) y la luz generada no se irradia al exterior. Además, el diseño de la unión de los contactos externos del rectificador con el material semiconductor no está pensada para dejar escapar esta luz al exterior.

Sin embargo, el caso del diodo LED es completamente distinto. Para su fabricación se usan otros materiales más adecuados al caso como el galio, el arsénico, el fósforo e incluso el aluminio. Para los azules se han conseguido buenos resultados con el carburo de silicio. Todos estos materiales tienen la facultad de ser transparentes y dejar pasar la luz.

Además, los diodos LED se construyen de tal manera que la unión de sus contactos externos con la pastilla de material semiconductor no se interpongan en el camino de la luz generada en el interior de la estructura cristalina.

El color de la luz emitida por un LED depende exclusivamente del tipo de material empleado en su fabricación. Uno de los últimos colores de luz desarrollado fué el azul, a finales de los años 90, y con él se consiguió el diodo LED de luz blanca por combinación aditiva con el amarillo, creado mucho antes.

COMO SE CONECTA UN LED A UNA BATERÍA
La intensidad de corriente con la que en circunstancias normales funciona un LED estándar es de entre 10 y 20 mA. La caída de tensión que soporta el LED para estas intensidades de corriente varía según el color de la luz que emite y el tipo del componente, estando normalmente entre 1,7 y 4,0 voltios para los más habituales. Lo mejor es consultar las características del fabricante o importador del componente concreto que queremos utilizar. Hemos incluido una interesante información al respecto en la zona de descargas.

En muchas ocasiones esto no es posible, por lo que hay que echar mano del sentido común y usar valores lógicos que nos permitan dar un uso normal al diodo, sin peligro de que lo hagamos "arder". Primeramente, si no conocemos la intensidad de corriente exacta que requiere el LED tenemos que partir de un término medio, es decir, ni 10 ni 20 mA, sino que vamos a usar 15mA.

Ahora debemos averiguar la caída de tensión en el LED. Para esto si que sería muy bueno que bajaras la información a la que nos hemos referido antes de la zona de descargas. En ella indicamos las tensiones de funcionamiento de los LEDs más habituales, además de otros datos de interés. No obstante, podemos decir que para los LED estándar de luminosidad normal, no los de alta luminosidad, esta tensión ronda los 2V.

Ahora que ya tenemos los datos necesarios vamos a hacer los cálculos, siempre asumiendo que los resultados obtenidos pueden no ser del todo exactos, aunque si aproximados. Partimos de la base de que un LED estándar necesita una tensión de 2V y la intensidad de corriente que consume es de 15 mA. Alguien puede decir: "Problema solucionado. Cogemos una pila de 2V y se la ponemos al diodo... ¡y ya está!... consumirá de la pila los 15mA que necesita". ¡Muy listo...!. Si señor... ¡Vaya mente prodigiosa!.

Lamentablemente, en la mayoría de las aplicaciones prácticas no disponemos de 2V, ni en forma de pila, ni en forma de batería, ni en forma de fuente de alimentación.

Es posible que solo dispongamos de un alimentador de 12V, o quizás la fuente de alimentación de nuestro equipo sea de 24V o más.

Por lo tanto es necesario el uso de una resistencia limitadora en serie con el LED, para que ésta se quede con la tensión sobrante y fije la intensidad de corriente del circuito a 15mA. Supongamos que la tensión de la batería de que disponemos es de 12V. Mira la ilustración adjunta.

Si ponemos la distribución de los componentes de otra manera es posible que entiendas mejor lo que tenemos que explicar ahora. Fíjate en el esquema siguiente.

En él hemos instalado dos voltímetros que nos indican la tensión que debe haber en cada componente, tanto en la resistencia como en el diodo. Además, también hemos instalado un miliamperímetro que nos indica la intensidad de corriente a través del circuito.

La tensión de 12V de la batería ha de repartirse entre la resistencia y el diodo según la proporción que se indica en el esquema. La caída de tensión en la resistencia limitadora ha de ser de 10V, para que el resto, que son 2V, esté en el diodo. Además, la intensidad de corriente a través del circuito ha de ser de 15mA. Con esto tenemos todos los datos precisos para calcular el valor de la resistencia limitadora. Se impone ahora el uso de la ley de Ohm. ¿Recuerdas las fórmulas de la ley de Ohm?.

Concretamente la que nos interesa dice que el valor de la resistencia en ohmios es igual a la tensión en voltios que existe en sus bornes dividido por la intensidad de corriente en amperios que la recorre.

Eso supone que tendríamos que dividir 10 voltios entre 0,015 amperios. Esta operación nos dice que el valor de la resistencia ha de ser 666 ohmios. Como 666 ohmios no es un valor estándar, elegimos el más cercano, que resulta ser 680 ohmios. Este sería el valor correcto de la resistencia a utilizar.

Si la tensión de que disponemos fuera de 5 voltios, el valor de la resistencia tendría que ser de 200 ohmios (220 valor estándar), que es el valor resultante de dividir 3 voltios (caida de tensión en la resistencia) entre 0,015 amperios (corriente a través del circuito).

Un último ejemplo; si la tensión de nuestra batería fuese de 18 voltios, el valor de la resistencia sería de 1066 ohmios (1200 valor estándar). Este a su vez es el valor resultante de dividir 16 voltios (caida de tensión en la resistencia) entre 0,015 amperios (corriente a través del circuito).

Si aún no te ha quedado claro el asunto, te dejamos un videotutorial para que puedas comprender como funciona el circuito sobre el terreno. Recuerda que el cálculo y diseño de circuitos electrónicos no suele arrojar casi nunca resultados exactos debido en parte a las tolerancias de los componentes usados, debiendose conseguir afinar el valor de los mismos en base a la experimentación.

Finalmente, un consejo para aquellos aficionados a la pesca nocturna que desean usar un diodo LED como señalizador en el puntero de su caña. Muchos utilizan una pila de litio de 3V del tipo CR2032, y le conectan directamente el LED sin que medie ninguna resistencia limitadora entre ambos.

Decirles que, aunque esta forma de conexión no es muy ortodoxa, ya que siempre conviene proteger el LED de algún modo, los diodos más adecuados para usarlos de esta manera son los de alta luminosidad de color blanco, azul y verde. Si se usan de otro color o los del tipo estándar de luminosidad normal, se correrá el riesgo de destruir el LED ya que su tensión de trabajo es más baja que los 3V que ofrece la CR2032.

 
C O M E N T A R I O S   
RE: Cálculo de circuitos con diodos LED

#4 manolos salinas » 17-12-2017 05:01

m :plup: :plup: uy bien explicado, gracias.

Sr.

#3 Ronnie Bello » 21-09-2017 01:42

Hola profe, como siempre su información es muy completa y sobretodo concisa, excelente para principiantes como yo ....

:plup:

RE: Cálculo de circuitos con diodos LED

#2 Miguel Ángel García » 02-03-2017 03:33

Qué valor de resistencia tengo que poner a un led para alimentarlo a 24 voltios

Cálculo con circuitos LED

#1 Edison » 05-07-2016 05:54

Felicitaciones desde Chile muy interesante y gracias por compartir conocimiento .

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +