Acceso



Registro de usuarios
Contáctenos
Teoría
Resistencias en serie y en paralelo

Es posible que en multitud de ocasiones hayas oído las expresiones "serie" y "paralelo" al hablar sobre determinados circuitos y/o componentes eléctricos o electrónicos. De hecho, en algunos de los artículos publicados en nuestro blog hemos mencionado alguna vez estos vocablos. Pero... ¿sabes exactamente que significan?. ¿Puedes distinguir cuando un condensador o una resistencia están conectados en paralelo o en serie?. ¿Que diferencias existen entre estos dos tipos de conexiones eléctricas?.

La verdad es que hemos estado tan ocupados hablando de la transmisión y recepción de radio, que no le hemos prestado casi ninguna atención a algo tan fundamental como son los circuitos serie y paralelo. A partir del presente artículo y en los que siguen, vamos a aprender todo lo relacionado con este tema.

En principio debes saber que cualquier componente electrónico puede conectarse de una o de otra manera, según nos interese, para conseguir un determinado propósito. Y según sea el tipo de conexión, el comportamiento de dicho componente será uno o será otro. A veces solo es posible un solo tipo de conexionado, ya que podría suceder que cualquier otro tipo de conexión fuese incompatible con el circuito que tenemos entre manos. Toda la información la tienes a continuación.

Leer más...
Artículos Relacionados
Otros Temas Interesantes
Noticias
Cabo de San Vicente (Portugal)

La verdad es que pocas veces se tienen oportunidades de presenciar algo tan singular como lo que os voy a presentar hoy. Quizás es uno de los sitios más bonitos de cuantos he visitado.

Como gran aficionado a la fotografía que soy no pude resistir la tentación de cargar con mi cámara cuando iniciamos el viaje, a sabiendas de lo que me iba a encontrar. Aunque las fotos impactan, solo puede notarse la impresión que causa este paraje natural estando presente allí, de pié junto al abismal precipicio.

Pensaba que iba a disfrutar como un cosaco y así fué, hasta tal punto que cuando miro las fotos que tomé después de cierto tiempo, me invade un sentimiento muy especial y las ganas de volver de nuevo a pasar un rato de verdadero placer, respirando aquel aire natural y agreste de la Costa Vicentina, la parte más occidental y reserva natural del Algarve portugués.

Leer más...
Radioaficionados
Montar una antena de móvil (II)

Continuamos con el montaje de nuestra antena de móvil. En el artículo anterior vimos la necesidad de que la antena de móvil disponga de un buen plano de tierra ya que de lo contrario tendremos muchos problemas de desadaptación y por lo tanto la relación de ondas estacionarias (ROE) se nos va a disparar. Hemos aprendido que, si no tenemos un buen plano de tierra tendremos que "crear" uno incorporandole a la parte interior del techo o capó del vehículo una superficie metálica de 30 x 30 centímetros o más (sirve por ejemplo una chapa de aluminio) y con las uñas de la "araña" de la base de la antena bien hundida en ella para lograr un contacto eléctrico adecuado.

Pero queda aún por aclarar algunos detalles de la instalación si queremos que nuestro equipo funcione de la mejor manera posible. ¿Que haremos si aparece ruido del motor? ¿Como puedo anular o reducir ese infernal ruido que se produce al arrancar y que aumenta conforme pisamos el acelerador? ¿Puedo conectar la alimentación de la emisora a la toma de mechero del vehículo? ¿Como ajusto la antena y le reduzco la relación de ondas estacionarias (ROE) al sistema? ¿Tengo que cortar necesariamente la varilla de la antena para que funcione mejor? ¿Es cierto que cortando (o añadiendo) cable coaxial puedo ajustar la ROE? Todo esto y más en el siguiente artículo.

Leer más...
Miscelanea
Monitor para la batería del automóvil

Es curioso, pero la verdad es que a todos nos ha pasado alguna vez lo mismo. Nos levantamos una mañana de frio invierno, con prisas porque tenemos el tiempo justo para llegar al trabajo (el que tenga esa suerte). Introducimos la llave de contacto de nuestro auto y la giramos. ¡SORPRESA!... el motor de arranque no voltea o lo hace con desgana.

El coche no furula, no arranca... Entonces algunos manifestamos nuestro enfado en un idioma desconocido, emitiendo ciertos sonidos guturales como.... "Grrrrrrrrr!!!!!". Otros, algo más "expresivos", comenzamos a lanzar por nuestra boquita ciertos vocablos malsonantes, dirigidos sobre todo hacia nuestro sufrido auto que ya tiene, como poco, cinco o seis años.

Sin embargo, esta situación la podríamos haber evitado si hubieramos tenido instalado el circuito que describimos en el presente artículo. Se trata de un simpático piloto de color rojo que nos avisará antes de tiempo de que ha llegado la hora de sustituir la batería de nuestro coche.

Si has leido los dos primeros artículos de la sección "Básico" estamos seguros que no vas a tener problemas para asimilar lo que sigue. ¡Vamos allá!

Leer más...
Práctica
Monitor para fusible mejorado

En un artículo anterior de nuestro blog ya abordamos un montaje titulado "Indicador de fusible fundido" mediante el cual tuvimos la oportunidad de estudiar el multivibrador astable.

Posteriormente publicamos otro artículo titulado "Monitor para fusible", en el que presentábamos un circuito mucho más simple que el primero, que iluminaba un led cuando el fusible fundía.

Sin ánimo de ser insistente, os queremos presentar ahora este otro monitor algo más sofisticado que el segundo y menos complicado que el primero, mediante el cual podemos saber de un vistazo si nuestro aparato electrónico está recibiendo la alimentación adecuada, o por contra, está interrumpida por culpa de un fusible defectuoso.

En esta ocasión usaremos un doble diodo LED con cátodos comunes. El encendido del LED de color verde (¡PERFECTO!) nos indicará el funcionamiento correcto del dispositivo, mientras que si el LED que luce es el de color rojo (¡ALARMA!) querrá decir que el fusible está interrumpido.

Debido a la extremada sencillez del circuito creemos que merece la pena integrarlo en alguno de nuestros montajes, según consideremos o no la necesidad o conveniencia de que incorpore la mencionada indicación.

Clica en "Leer completo..." para ver más detalles.

Leer más...
Teoría
LED intermitente con 1 transistor. Como funciona.

Probablemente ya conoces este circuito. Es posible que lo hayas visto en Youtube o en algún blog relacionado con la electrónica. Se trata de un diodo LED intermitente implementado con solo un transistor.

El invento funciona, eso si unicamente con algunos transistores, y además no puede ser más sencillo.

Solo tienes que echarle un vistazo al esquema insertado más abajo, famoso esquema, que probablemente alguien descubrió de verdadera "chamba", como decimos en mi tierra, de "chiripa" o por pura casualidad.

Sin embargo, hasta el momento no he podido localizar ningún sitio en Internet donde expliquen con detalle su funcionamiento, su "maquinaria", el "porqué" funciona.

No busques más. Aquí te lo desvelamos.

Leer más...
Noticias
Videotutorial del calculador para Ebay

Para aquellos que nos han trasladado sus consultas relativas a las dudas con el manejo de nuestro calculador de precios y comisiones de venta para Ebay España, aquí tenéis este videotutorial en HD mediante el cual estamos seguros que vais a despejar todas vuestras lagunas.

Esperamos con esto ayudaros con vuestras ventas a través de Ebay España, seáis particularesvendedores profesionales.

Leer más...

Cálculo de circuitos con diodos LED

Casi todo el mundo sabe de que se trata cuando se habla de diodos LED, esos pequeños componentes electrónicos que tienen la facultad de iluminarse cuando son atravesados por una corriente eléctrica. Además de que algunos modelos pueden llegar a desarrollar un considerable nivel lumínico el gasto energético que ocasionan es muy pequeño, por lo que en la actualidad ya han aparecido infinidad de lámparas domésticas basadas en ellos para casi todo tipo de aplicaciones.

Sin embargo, y centrándonos en los diodos LED estándar de 3 y de 5 milímetros usados en electrónica, muchos son los que se preguntan como se conectan a una pila o a una fuente de alimentación, quizás para usarlo como testigo de funcionamiento de algún equipo, o para hacer algún trabajo manual del colegio.

Hemos oido comentarios de todo tipo al respecto. Algunos dicen que el LED se conecta a la pila sin más, ya que piensan que funcionan con un determinado voltaje, algo parecido a las lamparitas de las linternas. Otros piensan que hay que poner dos o tres diodos más en serie, porque de lo contrario pueden "fundirse". Algunos no concretan y dicen que además del diodo LED y la pila o batería, el circuito debe de incorporar algún otro componente que lo proteja. ¿Que crees tu?.

El presente artículo tratará de arrojar luz sobre este tema, el cual en muchas ocasiones no está claro en la mente de algunos.

Aunque para conocer el procedimiento de conexión de un diodo LED a una batería no nos hará falta, sin embargo en un principio aclararemos como produce su luz este componente electrónico. Esto lo entenderás mejor cuando estudiemos los semiconductores, por lo que ahora no vamos a profundizar en ello. Solo tocaremos el tema superficialmente dejando para más adelante el verdadero estudio de estos dispositivos.

COMO PRODUCE LUZ UN LED
En la conducción electrónica de cualquier diodo o dispositivo semiconductor intervienen dos portadores de carga diferentes. A uno de ellos ya lo conocemos, son los famosos "electrones" los cuales tienen carga negativa.

Por otra parte están los "huecos" que, sin ser una partícula elemental como el electrón, se le considera como tal, aunque a nuestro entender sería mucho mejor llamarle pseudo-partícula dada su naturaleza.

Dichos huecos son los espacios vacíos que han quedado en aquellos átomos de la estructura cristalina del semiconductor que han perdido electrones, normalmente en su última órbita. Teniendo en cuenta que un hueco es la ausencia de un electrón, se considera que su carga es positiva.

La corriente electrónica en el interior de un semiconductor, por lo tanto, está formada por un desplazamiento de electrones en un sentido y, al mismo tiempo, un desplazamiento de huecos en sentido contrario al de electrones. Esto último no necesariamente indica la existencia de electrones libres en el cristal semiconductor, como veremos en artículos posteriores.

Ahora sería bueno recordar lo que dice la "ley de conservación de la energía", la cual estudiamos en su momento en otro de nuestros artículos: "La energía no se crea ni se destruye, solo se transforma". Ten presente esta enunciado en los próximos párrafos.

Cuando aplicamos un campo eléctrico (que es una forma de energía) a un semiconductor y por ello un electrón logra "escapar" de su átomo, dicho electrón comienza a moverse buscando el hueco más próximo en la estructura del material, y pasa a tener un nivel de energía superior al que tenía cuando estaba "ligado" a su átomo. Se puede decir que hemos transmitido a ese electrón parte de la energía del campo eléctrico aplicado al material semiconductor, y por ello el electrón se mueve.

Por lo contrario, cuando ese electrón encuentra un hueco en otro átomo y lo ocupa (a esto se llama recombinación), cesa su movimiento y pierde la energía que ganó en un principio. En ese momento la energía que tenía el electrón no vuelve al campo eléctrico aplicado al material semiconductor, sino que se transforma en calor y en luz.

En un diodo rectificador normal solo notamos el calor, ya que el material semiconductor del que está fabricado (generalmente silicio) es opaco (no transparente) y la luz generada no se irradia al exterior. Además, el diseño de la unión de los contactos externos del rectificador con el material semiconductor no está pensada para dejar escapar esta luz al exterior.

Sin embargo, el caso del diodo LED es completamente distinto. Para su fabricación se usan otros materiales más adecuados al caso como el galio, el arsénico, el fósforo e incluso el aluminio. Para los azules se han conseguido buenos resultados con el carburo de silicio. Todos estos materiales tienen la facultad de ser transparentes y dejar pasar la luz.

Además, los diodos LED se construyen de tal manera que la unión de sus contactos externos con la pastilla de material semiconductor no se interpongan en el camino de la luz generada en el interior de la estructura cristalina.

El color de la luz emitida por un LED depende exclusivamente del tipo de material empleado en su fabricación. Uno de los últimos colores de luz desarrollado fué el azul, a finales de los años 90, y con él se consiguió el diodo LED de luz blanca por combinación aditiva con el amarillo, creado mucho antes.

COMO SE CONECTA UN LED A UNA BATERÍA
La intensidad de corriente con la que en circunstancias normales funciona un LED estándar es de entre 10 y 20 mA. La caída de tensión que soporta el LED para estas intensidades de corriente varía según el color de la luz que emite y el tipo del componente, estando normalmente entre 1,7 y 4,0 voltios para los más habituales. Lo mejor es consultar las características del fabricante o importador del componente concreto que queremos utilizar. Hemos incluido una interesante información al respecto en la zona de descargas.

En muchas ocasiones esto no es posible, por lo que hay que echar mano del sentido común y usar valores lógicos que nos permitan dar un uso normal al diodo, sin peligro de que lo hagamos "arder". Primeramente, si no conocemos la intensidad de corriente exacta que requiere el LED tenemos que partir de un término medio, es decir, ni 10 ni 20 mA, sino que vamos a usar 15mA.

Ahora debemos averiguar la caída de tensión en el LED. Para esto si que sería muy bueno que bajaras la información a la que nos hemos referido antes de la zona de descargas. En ella indicamos las tensiones de funcionamiento de los LEDs más habituales, además de otros datos de interés. No obstante, podemos decir que para los LED estándar de luminosidad normal, no los de alta luminosidad, esta tensión ronda los 2V.

Ahora que ya tenemos los datos necesarios vamos a hacer los cálculos, siempre asumiendo que los resultados obtenidos pueden no ser del todo exactos, aunque si aproximados. Partimos de la base de que un LED estándar necesita una tensión de 2V y la intensidad de corriente que consume es de 15 mA. Alguien puede decir: "Problema solucionado. Cogemos una pila de 2V y se la ponemos al diodo... ¡y ya está!... consumirá de la pila los 15mA que necesita". ¡Muy listo...!. Si señor... ¡Vaya mente prodigiosa!.

Lamentablemente, en la mayoría de las aplicaciones prácticas no disponemos de 2V, ni en forma de pila, ni en forma de batería, ni en forma de fuente de alimentación.

Es posible que solo dispongamos de un alimentador de 12V, o quizás la fuente de alimentación de nuestro equipo sea de 24V o más.

Por lo tanto es necesario el uso de una resistencia limitadora en serie con el LED, para que ésta se quede con la tensión sobrante y fije la intensidad de corriente del circuito a 15mA. Supongamos que la tensión de la batería de que disponemos es de 12V. Mira la ilustración adjunta.

Si ponemos la distribución de los componentes de otra manera es posible que entiendas mejor lo que tenemos que explicar ahora. Fíjate en el esquema siguiente.

En él hemos instalado dos voltímetros que nos indican la tensión que debe haber en cada componente, tanto en la resistencia como en el diodo. Además, también hemos instalado un miliamperímetro que nos indica la intensidad de corriente a través del circuito.

La tensión de 12V de la batería ha de repartirse entre la resistencia y el diodo según la proporción que se indica en el esquema. La caída de tensión en la resistencia limitadora ha de ser de 10V, para que el resto, que son 2V, esté en el diodo. Además, la intensidad de corriente a través del circuito ha de ser de 15mA. Con esto tenemos todos los datos precisos para calcular el valor de la resistencia limitadora. Se impone ahora el uso de la ley de Ohm. ¿Recuerdas las fórmulas de la ley de Ohm?.

Concretamente la que nos interesa dice que el valor de la resistencia en ohmios es igual a la tensión en voltios que existe en sus bornes dividido por la intensidad de corriente en amperios que la recorre.

Eso supone que tendríamos que dividir 10 voltios entre 0,015 amperios. Esta operación nos dice que el valor de la resistencia ha de ser 666 ohmios. Como 666 ohmios no es un valor estándar, elegimos el más cercano, que resulta ser 680 ohmios. Este sería el valor correcto de la resistencia a utilizar.

Si la tensión de que disponemos fuera de 5 voltios, el valor de la resistencia tendría que ser de 200 ohmios (220 valor estándar), que es el valor resultante de dividir 3 voltios (caida de tensión en la resistencia) entre 0,015 amperios (corriente a través del circuito).

Un último ejemplo; si la tensión de nuestra batería fuese de 18 voltios, el valor de la resistencia sería de 1066 ohmios (1200 valor estándar). Este a su vez es el valor resultante de dividir 16 voltios (caida de tensión en la resistencia) entre 0,015 amperios (corriente a través del circuito).

Si aún no te ha quedado claro el asunto, te dejamos un videotutorial para que puedas comprender como funciona el circuito sobre el terreno. Recuerda que el cálculo y diseño de circuitos electrónicos no suele arrojar casi nunca resultados exactos debido en parte a las tolerancias de los componentes usados, debiendose conseguir afinar el valor de los mismos en base a la experimentación.

Regístrate... ES GRATISSi no eres usuario "Premium" puedes visualizarlo en nuestro canal de Youtube. También puedes suscribirte al canal y de esta manera no te perderás ninguna de nuestras publicaciones.

Finalmente, un consejo para aquellos aficionados a la pesca nocturna que desean usar un diodo LED como señalizador en el puntero de su caña. Muchos utilizan una pila de litio de 3V del tipo CR2032, y le conectan directamente el LED sin que medie ninguna resistencia limitadora entre ambos.

Decirles que, aunque esta forma de conexión no es muy ortodoxa, ya que siempre conviene proteger el LED de algún modo, los diodos más adecuados para usarlos de esta manera son los de alta luminosidad de color blanco, azul y verde. Si se usan de otro color o los del tipo estándar de luminosidad normal, se correrá el riesgo de destruir el LED ya que su tensión de trabajo es más baja que los 3V que ofrece la CR2032.

 
C O M E N T A R I O S   
RE: Cálculo de circuitos con diodos LED

#4 manolos salinas » 17-12-2017 05:01

m :plup: :plup: uy bien explicado, gracias.

Sr.

#3 Ronnie Bello » 21-09-2017 01:42

Hola profe, como siempre su información es muy completa y sobretodo concisa, excelente para principiantes como yo ....

:plup:

RE: Cálculo de circuitos con diodos LED

#2 Miguel Ángel García » 02-03-2017 03:33

Qué valor de resistencia tengo que poner a un led para alimentarlo a 24 voltios

Cálculo con circuitos LED

#1 Edison » 05-07-2016 05:54

Felicitaciones desde Chile muy interesante y gracias por compartir conocimiento .

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.