Acceso



Registro de usuarios
Otros Temas Interesantes
Contáctenos
Teoría
El receptor de Radiofrecuencia Sintonizada

Cuando aún el superheterodino (receptor que estudiaremos en breve) estaba en período de perfeccionamiento, se comercializó un equipo de radio que, si bién no tenía la capacidad del primero en cuanto a sensibilidad ni a selectividad, en aquella época era lo más avanzado del momento. Hablamos del receptor de Radiofrecuencia Sintonizada.

Este receptor fue muy popular entre los años veinte y los años treinta. Aunque se comenzó a fabricar con triodos, con el desarrollo de la válvula tetrodo y la aparición en escena de los nuevos pentodos se facilitaron mucho las cosas para que el receptor de radiofrecuencia sintonizada se presentase al público en general, y la verdad sea dicha, con tremendo éxito de mercado.

Hablamos en este artículo de como estaba constituido y de algunas de sus peculiaridades.

Leer más...
Noticias
AFHA - Curso Electrónica, Radio y TV - Tomo 12

Tomo 12 del curso de Electrónica, Radio y Televisión de AFHA.

Leer más...
Radioaficionados
Construya un ondámetro de 1,5 a 230 MHz

Al principio no existían las calculadoras, ni electrónicas ni mecánicas. Los historiadores dicen que se usaban los dedos de las manos para contar.

Entonces, a alguien se le ocurrió la feliz idea de insertar en un marco de madera una serie de hileras de alambre con unas pocas bolas ensartadas. Había nacido el ábaco, no se sabe a ciencia cierta en que momento ni lugar.

Más próximo a nuestra época se descubrió que usando unos listones móviles, graduados con determinadas escalas y engarzados de manera que pudieran deslizarse el uno sobre el otro, podían realizarse operaciones matemáticas de cierta complejidad. A esta herramienta se le acabó llamando "regla de cálculo".

Durante el pasado siglo, la regla de cálculo fue el instrumento usado por ingenieros, arquitectos y científicos de todas las especialidades en su trabajo cotidiano, mediante el cual podían resolver no solo la mayoría de operaciones aritméticas. Se utilizaban para realizar cálculos logarítmicos, resolver fórmulas trigonométricas y para llevar a cabo procedimientos matemáticos concretos de química, finanzas, etc. Esta herramienta, aunque su precisión era limitada, ayudó a construir puentes, edificios, automóviles y, como no, a diseñar equipos electrónicos.

Pero al margen de la efectividad de la regla de cálculo para resolver operaciones matemáticas, la llegada de las calculadoras electrónicas digitales en la década de los años 70 acabaron con su hegemonía y se impusieron por razones obvias.

No sabemos, estimado lector, si tu habrás hecho uso en alguna ocasión de una regla de cálculo, o si incluso posees uno de estos "especimenes" en vias de extinción. Sea o no sea así, te podemos asegurar que aún hoy dia existe gente que las utiliza. ¿Por qué razón te contamos esto?. Clica en "Leer completo..." y te enterarás.

Leer más...
Miscelanea
Sencillo VU-Meter a diodos LED

Lejos quedan aquellos tiempos en los que todos los medidores, y al decir todos me refiero a TODOS, estaban construidos mediante un galvanómetro y la lectura se realizaba con una aguja que parecía deslizarse al recorrer una escala graduada.

A decir verdad, para aquellos que en cierta manera somos de "la vieja escuela", los referidos medidores, midieran lo que midieran, tenían un encanto muy especial y podría decirse que sentimos "morriña" cuando los recordamos, como diría un gallego al estar lejos de su tierra y escuchar el sonido de una gaita.

Pero llegaron los diodos LED y se hizo la luz. Desde entonces, son muchos y muy variados los VU-Meters, vúmetros o medidores de unidades "VU" (del inglés Volume Unit) que se han desarrollado incorporando este componente electrónico, sobre todo usando la tecnología de la integración.

Pero en este artículo no vamos a publicar la información técnica para construir uno de estos instrumentos con los clásicos circuitos integrados UAA170 o UAA180 ni con cualquier otro. Tampoco vamos a enseñarte a conectar esas "barritas" LED con diferentes diseños. ¡Con ellas practicamente lo tienes todo hecho!.

En este artículo vamos a enseñarte como construir un VU-Meter LED con componentes discretos. ¡Dale ya al "Leer completo..." para saber más!.

Leer más...
Práctica
La soldadura

"Teoría sin práctica es parálisis y práctica sin teoría es ceguera". Con la primera parte de esta frase, cuya autoría desconocemos, podemos resaltar la importancia de que cualquier cosa que estudiemos siempre vaya acompañada de ejercicios prácticos. De nada en absoluto nos sirve estudiar muy a fondo cualquier rama del saber si luego somos incapaces de poner en práctica lo aprendido. ¿Cuantos inventos han podido no ver la luz si su inventor no hubiera llevado a la práctica la idea, basada en su conocimiento teórico, que tuvo en un momento determinado?.

La segunda parte de la frase es tan cierta como la primera y, por desgracia, se da con bastante más frecuencia que su compañera en la vida real. Cuantas veces hemos contratado a un "profesional" para que nos haga un trabajo y al final, cuando ha terminado, vemos "la chapuza" que nos entrega. ¡Cuanta razón tenía Leonardo Da Vinci cuando expresó lo siguiente!: "Los que se enamoran de la práctica sin la teoría son como pilotos sin timón ni brújula que nunca podrán saber a donde van". Esto nos confirma que "práctica sin teoría es ceguera".

Pues bién, todo ello trasladado a la radio y la electrónica tiene una importancia decisiva. Por lo tanto, vamos a practicar un poco con algo esencial para construir nuestros circuitos de forma apropiada. ¿Que tal si aprendemos a soldar correctamente?. ¿Te gusta la idea?

Leer más...
Teoría
Las válvulas de vacío VI

Bienvenidos al sexto artículo de esta serie dedicada a las válvulas de vacío. Vamos a ver a continuación un receptor que hizo furor hace años, cuando las válvulas termoiónicas estaban en su apogeo y los radioaficionados eran verdaderos "manitas", ávidos de experimentación y deseosos de construir con sus propias manos un receptor de radio.

Describiremos el circuito de un receptor que mejora sustancialmente las características del que estudiamos en el artículo anterior. Utilizaba una técnica llamada "detección por rejilla" y, a pesar de que usa prácticamente los mismos componentes que el "detector por placa" visto en el artículo precedente, el aumento de sensibilidad es considerable por lo que fué bastante usado en su época.

En el siguiente artículo estudiaremos el llamado "detector a reacción" con el que, solo a costa de cierta inestabilidad asumible y perfectamente controlable por el usuario, se obtenía una sensibilidad aún superior a la del detector por rejilla. Pero eso será después de conocer el funcionamiento del primero.

Clic en el botón "Leer completo..." para continuar.

Leer más...
Noticias
AFHA - Electricidad Teórico Práctica - Tomo 5

Tomo 5 del curso de Electricidad Teórico Práctica de AFHA.

Leer más...

Las válvulas de vacío III

Para continuar con los artículos relativos a las válvulas de vacío, iniciaremos este último hablando sobre un par de aplicaciones que en su dia tuvieron los diodos termoiónicos, aplicaciones relacionadas por supuesto con la radio.

Posteriormente, en el siguiente artículo, continuaremos repasando un poco el principio físico por el que se rige el funcionamiento de otra válvula termoiónica, el triodo, para acabar mencionando el protagonismo que años atrás tuvieron algunas otras válvulas de más electrodos.

Artículos cortos particularmente desde nuestro punto de vista, no en extensión pero sí en desarrollo, ya que existe mucha tela que cortar en este aspecto. Sin embargo, los reduciremos a la mínima expresión posible dada la actual inexistencia de circuitería práctica que incluya este tipo de componentes electrónicos. Pasa dentro, por favor ...

El diodo termoiónico se utilizó en los radioreceptores básicamente como demodulador y como rectificador en las fuentes de alimentación. Si quieres ver una imagen ampliada del detalle de construcción de una de estas válvulas puedes hacer click aquí y se abrirá una nueva ventana con un gráfico que podrás visualizar con mayor comodidad.

RENDIMIENTO FUNCIONAL
Tenemos que decir en este punto que técnicamente el funcionamiento del diodo termoiónico se aproxima más a la perfección que el del diodo semiconductor. ¿Te preguntas la razón de esta última afirmación?.

Si miramos únicamente la faceta que atañe a la señal que tenemos entre manos, y no al consumo energético, nos daremos cuenta de algo muy importante. Cuando se le aplica al diodo semiconductor una d.d.p. con polaridad inversa, prácticamente no deja circular corriente alguna.

Observa que en el párrafo anterior hemos usado el término "prácticamente", y con él hemos querido expresar que, aunque esta corriente inversa es ínfima, existe y circula a su través, de forma que es perfectamente evaluable.

Esto no le ocurre al diodo termoiónico de vacío. Si a este último lo polarizamos de manera inversa no circulará absolutamente ninguna corriente por su interior ya que, al ser la placa negativa con respecto al cátodo, no se cumplen las necesarias condiciones para que pueda existir siquiera esa pequeña corriente que si podemos detectar en el componente semiconductor.

La placa del diodo de vacío no solo no está caldeada, sino que además no está fabricada de un material que sea propenso a la ionización, como si que ocurre con el cátodo el cuál está revestido con óxidos metálicos que tienden a producir este efecto en cuando recibe el calor suficiente.

Por estas razones, el diodo de vacío no conduce en absoluto cuando recibe una d.d.p. con polaridad inversa. Podemos decir que electrónicamente, y no energéticamente, el diodo de vacío tiene un rendimiento superior al de cristal o semiconductor.

Sin embargo, esta no ha sido razón suficiente para que nuestro "viejo héroe" haya perdurado hasta nuestros dias, ya que el gasto energético que acarrea el caldeo del cátodo ha hecho que se le condene de por vida a un desuso y olvido permanente.

EL DIODO DE VACIO COMO DEMODULADOR
¿Recuerdas nuestro receptor elemental con diodo de cristal semiconductor?... ¡Efectivamente!... el llamado radio galena. Pues bien, en dicho circuito podemos sustituir el diodo semiconductor por un diodo temoiónico de vacío y nuestro aparato de radio seguirá funcionando a las mil maravillas.

Fíjate bien en la siguiente ilustración en la que, con relación a un receptor de galena con diodo de cristal semiconductor, solo se ha cambiado dicho diodo de cristal por uno temoiónico.

Lógicamente se ha necesitado una fuente de alimentación, imprescindible para el caldeo de su filamento, pero su funcionamiento sería más que excelente, incluso mejor que el de su homónimo semiconductor por las razones que ya hemos apuntado.

EL DIODO DE VACIO COMO RECTIFICADOR
En la mayoría de los receptores a válvulas era necesaria la colaboración de la llamada fuente de alimentación. Normalmente, las válvulas termoiónicas necesitan en sus placas una tensión positiva de cierta magnitud para poder realizar su función correctamente. Y hemos dicho "normalmente" porque, como acabas de ver, en el ejemplo anterior de un receptor con diodo termoiónico no hemos usado ninguna fuente de alimentación, a excepción de la necesaria para el caldeo de su filamento.

No obstante, hemos de decir que este tipo de receptor, como ya sabemos, utiliza únicamente la propia energía de la señal de R.F. recibida por la antena. Puede decirse que en este circuito, el diodo tiene un comportamiento relativamente pasivo.

Sin embargo, en receptores con una circuitería más elaborada en la que intervienen válvulas triodos y pentodos, a las cuales se les encomendaban funciones especializadas como amplificadoras, osciladoras o mezcladoras, era absolutamente necesario el concurso de una o varias tensiones continuas de polarización de varias decenas de voltios. Para conseguir esta fuente de tensión contínua, a partir de la alterna de la red eléctrica, eran utilizados los diodos entre otros componentes electrónicos.

Existían varios tipos de fuentes de alimentación con diodos de vacío. La más sencilla era la que incorporaba un solo diodo como rectificador de media onda. Puedes ver el esquema en la ilustración de arriba.

Un transformador conectado a la red suministraba en su secundario una tensión senoidal de la amplitud apropiada al circuito que debía alimentar. El diodo de vacío rectificaba dicha onda senoidal, dejándola solo con los semiciclos positivos. Así se lograba obtener una tensión continua, de un solo sentido, aunque en forma de pulsos.

No obstante esto no servía para cumplir el propósito para el que fué pensada la fuente de alimentación, no bastaba. Lo que se necesitaba no eran pulsos sino una tensión contínua lo más pura posible, con el mínimo rizado e imperfecciones, y a partir de ella alimentar las placas de las demás válvulas.

Para conseguir lo anterior se usaba un filtro a base de uno o dos condensadores de una capacidad elevada.

Este condensador se encargaba de "aplanar" la semi-senoide rellenando sus huecos, dejándola casi sin rizado al cargarse con la tensión de pico de los pulsos y cediendo dicha carga durante el tiempo en el que esos pulsos no existían, logrando que la tensión pulsante se convirtiera en una tensión continua casi uniforme (ver los artículos dedicados a los condensadores I, II y III).

Para que lo podáis entender, y aplicando un símil hidráulico, es como si tuviéramos en el tejado de casa un depósito que se llenara de forma automática de la red de distribución de agua de nuestra ciudad. Desde el momento en que la empresa de distribución corte el agua en la zona donde vivimos, dispondremos en nuestro depósito de cierta cantidad del líquido elemento, el cual suplirá al de la red durante un período de tiempo determinado por la magnitud de nuestro propio consumo.

Si el agua de la red de distribución nos llega de nuevo antes de que se nos acabe la que tenemos almacenada en nuestro depósito, no notaremos nada en absoluto. El agua no nos faltará y disfrutaremos de ella exactamente igual como si la empresa de distribución no la hubiera cortado nunca. La función del condensador de filtro de la fuente de alimentación es muy similar a la que tiene el depósito de agua. Lo entiendes... ¿verdad?.

Sin embargo. este tipo de fuente de alimentación adolecía de algún que otro inconveniente, sobre todo desencadenados cuando el consumo del equipo conectado a ella era alto.

Frente a un consumo relativamente elevado, el rizado de la onda rectificada hacía su aparición al no poder el condensador atender la demanda de corriente que se le requería, descargándose antes de que llegara el siguiente pulso, lo que producía un zumbido en el altavoz del receptor, que a veces podía llegar a ser importante y muy molesto.

Es como si, volviendo al símil hidráulico, nuestro consumo de agua fuera muy elevado. Entonces el depósito se vaciará antes de tiempo, y nos quedaremos sin agua hasta que la empresa distribuidora nos abastezca de nuevo.

La solución no pasaba por aumentar de forma desmesurada la capacidad del condensador, ya que estos eran caros, voluminosos y además se corría el riesgo de dañar el diodo en el momento de conectar el equipo o hacer saltar el fusible de protección del sistema. Recordemos que un condensador de gran capacidad se comporta durante los primeros instantes de su carga como un verdadero cortocircuito.

Para paliar el problema, se acudía con relativa frecuencia a "acortar" la distancia que separaban los pulsos rectificados por el diodo para que el condensador tuviera "menos trabajo". El razonamiento es el siguiente; si la distancia en el tiempo entre dos pulsos consecutivos fuera la mitad, el condensador podría realizar su cometido en mejores condiciones ya que, valga la expresión, no tendría tanto hueco que rellenar.

De esta manera podrían usarse condensadores de una capacidad más moderada, al no tener que mantener su carga durante todo el tiempo en que lo hacían en el circuito anterior.

Cuanto más cerca estuvieran los pulsos entre sí, más fácil le resultaría al condensador "aguantar" la tensión de pico recibida del pulso anterior, ya que la "ayuda" del siguiente pulso llegaría en menos tiempo... ¿Entendido?. La pregunta es... ¿Que diablos podemos hacer para que los pulsos estén mas cerca unos de otros?.

Para conseguirlo, se echaba mano del llamado "rectificador de onda completa", el cual aprovechaba tanto los pulsos positivos como los negativos de la onda senoidal presente en el secundario del transformador. Se necesitaban dos diodos, y no solo uno, para llevarlo a cabo, además de un transformador con toma intermedia. El circuito de que hablamos puedes verlo en la ilustración superior.

Los filamentos de las válvulas, aunque se han representado fuera de ellas, siguen estando dentro. Esto se suele hacer para aclarar un poco el esquema y evitar un cruce de lineas innecesario.

En cada semiciclo de la onda alterna presente en el secundario del transformador conduce uno de los diodos y se bloquea el otro, de manera que en cualquiera de los dos semiciclos de la alternancia siempre existe un diodo conduciendo y otro bloqueado.

En realidad, gran parte de los diodos termoiónicos se fabricaban encapsulados por pares, tanto los destinados a la rectificación en fuentes de alimentación, como los que se montaban como demoduladores. En este último caso, uno de los diodos se usaba para demodular la señal de RF y el otro para obtener la tensión del llamado C.A.V. (Control Automático de Volumen), modernamente C.A.G. (Control Automático de Ganancia) o C.A.S. (Control Automático de Sensibilidad).

En el caso que nos ocupa de un doble diodo rectificador, en una misma válvula se introducían dos diodos casi completos. Y decimos "casi completos" porque, aunque dicha válvula tenía dos placas diferentes (una para cada diodo), solo existía un cátodo compartido y común para ambos diodos. Esto era más que suficiente para montar una fuente de alimentación con rectificación de onda completa, como puedes ver en el dibujo.

Observa que en el circuito con dos diodos completos, los cátodos trabajan unidos, por lo que no había ningún inconveniente técnico para que estuvieran unidos en el mismo interior de la válvula. Además, fabricando los diodos así solo tenía que alimentarse un filamento y no dos, con lo que se había conseguido un ahorro energético.

El funcionamiento del circuito es muy simple pero, aunque ya hemos adelantado algo, lo estudiaremos a fondo un poco más adelante, cuando toquemos las fuentes de alimentación con diodos semiconductores. Debes saber y tener presente que el principio teórico de esta fuente de alimentación es el mismo tanto si se construye con diodos termoiónicos como si se hace con diodos semiconductores, por lo que estudiarlo con unos o con otros no cambiará absolutamente nada.

Sabemos que se han quedado muchas cosas en el tintero, pero el objetivo era solo hacer un repaso superficial y es lo que hemos hecho. Ahora haremos un alto en el camino, para continuar hablando de las válvulas de más electrodos en nuestro próximo artículo. Hasta entonces.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +