Acceso



Registro de usuarios
Contáctenos
Teoría
Protección contra sobretensiones

Todo aquel que ha estado reparando equipos de radio durante cierto tiempo sabe que en multitud de ocasiones llegan al SAT los clásicos "cadáveres" que han sufrido una sobretensión.

Normalmente, la gran mayoría de estos equipos vienen protegidos de origen contra inversiones de polaridad, siempre que se le respete el valor al fusible... ¡claro!, pero no todos vienen con una protección contra sobretensiones.

Para aclararle el significado del término a aquellos que no sepan que significa "sobretensión", se trata de aplicarle a la emisora una tensión de polaridad correcta pero bastante más elevada que la nominal. Por ejemplo, "meterle" los 24 voltios de las dos baterías de un camión en vez de los 12 o 13 voltios necesarios.

Y antes dije cadáveres (entre comillas) porque, para desgracia para su dueño, cuando acontece esta vicisitud provoca un verdadero desastre en el aparato; etapas de potencia de audio, finales y drivers de RF, reguladores, etc... Generalmente la sobretensión arrasa con todo, incluida la billetera de su propietario.

Parece mentira pero, como en muchas otras situaciones de la vida, los accidentes más graves podrían reducirse a cero con un costo mínimo y con algo más de previsión.

Si deseas saber como prevenir una sobretensión en tu equipo de radio, de una manera muy simple, lee el resto de este artículo.

Leer más...
Otros Temas Interesantes
Noticias
AFHA - Curso Electrónica, Radio y TV - Tomo 12

Tomo 12 del curso de Electrónica, Radio y Televisión de AFHA.

Leer más...
Radioaficionados
Montar una antena de móvil (I)

A cuantos les ha ocurrido alguna vez que habiendo comprado una emisora de C.B. o VHF ha necesitado montar la antena en su automóvil. Pero... ¿Quién puede hacerlo con garantía de éxito?. Resulta que montar la dichosa antena parece ser algo relativamente fácil, pero luego viene algo que es más difícil que la instalación propiamente dicha... ¡El ajuste!.

Efectivamente, el ajuste de una antena montada en un automóvil a veces da muchos quebraderos de cabeza por diferentes razones. Muchos son los que lo han intentado y no lo han conseguido. Sus comentarios, después de la instalación, son generalmente estos: "Mi equipo solo tiene un alcance de unos cientos de metros, no aleja", "Recibir si que recibo, pero a mi no me escuchan", "Cuando llevo un rato intentando modular y toco la emisora... ¡casi me quemo!"... y cosas por el estilo. ¿Te ha ocurrido esto a tí en alguna ocasión?

¿Que te parecería si alguien te explicara exactamente como debes montar y posteriormente ajustar una antena? Aquí en "radioelectronica.es", y leyendo atentamente este artículo, estamos seguros de que serás capaz de montar correctamente una antena de radioaficionado en tu coche, o en el de un amigo, y posteriormente ajustarla a la perfección para que tu equipo de radio rinda al máximo posible sin calentarse más de lo necesario. No solo la recepción de tu emisora será buena, sino que cuando emitas con ella lo hará a las mil maravillas. ¡La única pega es que cuando aprendas todos querrán que le montes la suya!. ¿Te gusta la idea?... Pués sigue leyendo.

Leer más...
Miscelanea
Luneta térmica (antivaho) como antena AM-FM

Es probable que alguna vez te haya pasado lo que a mi.

Se activó la alarma del radio-reloj a las 8:00 de la mañana en punto. Todavía casi dormido me incorporé y corrí las cortinas oyendo las noticias en mi emisora favorita. Unos espléndidos rayos de sol penetraron de golpe en mi habitación y acabaron con la oscuridad que hasta entonces había en ella.

Acto seguido procedí al correspondiente aseo matutino para, justo después, sentarme a desayunar. El café estaba exquisito y la tostada, regada con aceite de oliva virgen extra, me supo a gloria bendita.

Aquel dia me levanté contento, muy contento. Tenía muy buenas espectativas. Como soy un enamorado de la radio, me gusta escuchar las tertulias matinales en el coche de camino al trabajo, lo primero que hago al subir al vehículo es conectarla.

He de aclarar que mi coche duerme en plena calle. No soy el afortunado conductor que dispone de garaje. ¡Que raro!... No logro sintonizar ninguna emisora... ¿Que está pasando?.

Paro el coche y me apeo para comprobar la antena... ¡LA ANTENA!... ¡Coñ.!... ¡Que me han robado la antena!.

Esto me estropeó completamente el dia. El cabreo que pillé fue monumental, de campeonato. Entonces tomé una decisión.

Para que esto no me ocurriera más, a partir de entonces decidí usar la luneta térmica, también conocida por el término "antivaho", como antena para mi receptor de radio AM/FM. Si alguien tenía la intención de dejarme sin escuchar la radio tendría que llevarse la luna trasera, y ya eso le iba a resultar más complicado que robar una simple antena... ¿no crees?.

Leer más...
Práctica
Detector de polaridad

Uno de los mayores errores que se cometen al enchufar equipos electrónicos a baterías o a fuentes de alimentación de corriente continua es la inversión de polaridad. ¿Te ha ocurrido esto a ti alguna vez al instalar una emisora de radioaficionado en tu automóvil y conectarla a su circuito eléctrico?.

Cuando se da esta circunstancia uno se pregunta... "¿como me ha podido pasar a mi?. No es posible, estoy viviendo un mal sueño, una pesadilla. Yo siempre voy con muchísimo cuidado. Pronto despertaré...". Pero no. Por desgracia no se trata de un sueño sino de una situación real. Has cometido el error más frecuente cuando se manejan equipos electrónicos con alimentación continua exterior; la temida inversión de polaridad.

Para que esto no te vuelva a pasar vamos a enseñarte a construir un sencillo aparato con el que podrás detectar muy facilmente la polaridad de una tensión continua desde 2 hasta 230 voltios aproximadamente. También te indicará, caso de que no se trate de una tensión continua, si dicha tensión es alterna.

Mediante unos diodos LED bicolor este tester te marcará, sin ninguna posibilidad de error, cual es el polo positivo y cual el negativo de una determinada toma de corriente eléctrica o si por contra se trata de una tensión alterna. ¿Te interesa?. Sigue leyendo, por favor...

Leer más...
Teoría
El divisor de tensión visto graficamente

"Una imagen vale más que mil palabras". Así reza el famoso axioma del refranero español, el cual parece provenir de un antiguo proverbio chino que, traducido al castellano, diría algo así como "el significado de una imagen puede expresar diez mil palabras".

En cualquier caso, este precepto muestra el potencial que puede llegar a tener una ilustración para transmitir, explicar o comunicar determinados aspectos de algo. Y precisamente esa es nuestra pretensión con la publicación de este artículo.

Pongamos un ejemplo de lo que te estamos diciendo... ¿Como transmitirías a otra persona la belleza y magnificencia de una aurora boreal?. Seguro que te resultaría muy complicado. Sin embargo, y dejando de lado la maravillosa sensación de verla in situ, si le enseñas una foto ya tendrás gran parte del trabajo realizado.

Con este artículo queremos enseñarte a resolver un divisor de tensión resistivo mediante un gráfico de coordenadas cartesianas. Es muy posible que de esta manera te quede mucho más claro en la mente el funcionamiento de este tipo de circuitos. Además, será un primer paso para la resolución por este mismo medio de circuitos más complicados que incluyan componentes activos y para el estudio de sus curvas características.

¡Vamos allá...!

Leer más...
Noticias
DISEÑO DE SISTEMAS DE LUCES LED A 230V

COMO DISEÑAR PEQUEÑOS SISTEMAS
DE ILUMINACIÓN LED SIN USAR
COMPLICADOS DRIVERS

De nuevo volvemos a la carga con un video que trata el diseño de circuitos electrónicos.

En esta ocasión le ha tocado el turno a la creación de dispositivos de iluminación LED alimentados a partir de la red eléctrica doméstica.

Es casi imposible navegar por internet  en sitios dedicados a la electrónica y no encontrar algún artículo escrito o video publicado en alguna plataforma que hable de los diodos LED.

Sin embargo, la información que hay en ellos no siempre es fidedigna.

Clica en LEER COMPLETO para conocer más detalles...

Leer más...

Las ondas (IV)

En el artículo anterior vimos la relación que existe entre la frecuencia, la velocidad y la longitud de onda de un movimiento ondulatorio determinado. Es cierto que la velocidad de un movimiento ondulatorio la podemos determinar a partir de su longitud de onda y de su frecuencia, pero no es menos cierto que dicha velocidad no depende proporcionalmente de esos parámetros. Lo que intentamos expresar es que, dentro de un determinado tipo de ondas (por ejemplo las que engloban los sonidos audibles), su velocidad no aumenta cuando aumenta su frecuencia o su longitud de onda, sino que permanece mas o menos estable, y esto es fácil de entender porque al aumentar la frecuencia disminuye su longitud de onda y viceversa, y la velocidad -recordemos- es el resultado del producto de ambos factores (V = F · λ).

Sin embargo, sabemos que existen otra clase de ondas muchísimo más rápidas que los sonidos audibles. Se trata de ondas que tienen la facultad de viajar a la velocidad de la luz, unos 300.000 kilómetros por segundo. ¿Cual es la diferencia entre estos tipos de ondas para que la velocidad sea tan dispar entre ellas? ¿Como se hace para lograr el "milagro" de que una onda sonora, que solo viaja a poco mas de 340 metros por segundo, la podamos oir en todo el globo terraqueo prácticamente al mismo tiempo? Las respuestas las tienes a continuación.

Contestemos en primer lugar a la pregunta de ¿que es lo que hay tan distinto entre las ondas sonoras (343,5 metros por segundo) y por ejemplo las ondas luminosas (unos 300.000 Kms. por segundo) para que exista esa abismal diferencia en su velocidad? Pués sencillamente que las primeras son "ondas mecánicas" y las segundas "ondas electromagnéticas".

Podemos llegar a entender esto a la perfección si pensamos que una onda mecánica, por ejemplo el sonido, se basa en la vibración de partículas, corpúsculos físicos o moléculas y que por lo tanto están sometidos a rozamientos entre ellos. Ese rozamiento, como ocurre en cualquier proceso mecánico, es el responsable en gran manera de que se pierda la energía inicial de la onda, lo que en el caso del sonido significa que desaparezca rápidamente el movimiento ondulatorio provocado en un principio. Por esta razón las ondas sonoras, aunque se produzcan en las mejores condiciones posibles, tienen un alcance bastante limitado.

Las ondas mecánicas se transmiten, como ya hemos estudiado, por la vibración de las moléculas del medio en que se propagan. La existencia de ese medio (aire, agua, gas, etc...) es esencial para que la onda mecánica se propague, y sin él la onda jamás se propagará. Por este motivo los sonidos no se transmiten en el espacio exterior donde no existe nada, solo un vacío inmenso. Ahora podemos comprender que dependiendo del medio de propagación en que se transmitan, la velocidad de estas ondas es distinta. Por ejemplo, la velocidad del sonido en el agua (a una temperatura de 25º centígrados) es de unos 1.493 metros/seg., en el acero de 5.100 metros/seg. y en el aluminio de 6.400 metros/seg., como vemos lejos de los 343,5 metros/seg. de su velocidad en la atmósfera terrestre.

Las ondas electromagnéticas, por el contrario, no son ondas mecánicas. Podríamos decir que se trata de campos eléctricos y campos magnéticos enlazados y perpendiculares entre si (mira la siguiente ilustración). El campo eléctrico produce un campo magnético y a su vez el campo magnético produce de nuevo un campo eléctrico. No necesitan de ningún medio para propagarse como ocurre con las ondas mecánicas, por lo que viajan perfectamente a través del vacío absoluto. Además, al no estar sometidas a roces de ningún tipo, conservan su energía durante largos recorridos de cientos, miles e incluso millones de kilómetros. Así se explica que la luz y el calor del sol, dos tipos de energías ondulatorias electromagnéticas (ondas luminosas y ondas calóricas), lleguen hasta nosotros desde casi 150 millones de kilómetros con intensidades bastante elevadas. Incluso podemos ver como lucen las estrellas que están a años luz de la Tierra.

Por este motivo no debe extrañarnos que puedan llegar hasta nosotros las ondas de radio emitidas por antenas situadas a miles de kilómetros de nuestros receptores y, una vez procesadas, podamos oir la información que se ha plasmado en ellas. Las ondas de radio también son ondas electromagnéticas y por lo tanto tienen las mismas o muy parecidas propiedades que las anteriormente tratadas. Su velocidad también es de 300.000 kilómetros/seg. y su frecuencia puede oscilar entre algunas decenas de miles de hercios y miles de millones de ellos. A este tipo de ondas se les llama señales de alta frecuencia.

Me gustaría que retuvieras este concepto, por favor: generalizando y expresándonos en términos electrónicos, hablamos de ondas de alta frecuencia cuando nos referimos a las ondas electromagnéticas de radio y de ondas de baja frecuencia cuando nos referimos al sonido u ondas sonoras. No obstante, decir que también existe una clasificación dentro de las propias señales o tipos de ondas concretas. Por ejemplo, dentro de las señales de radio distinguimos las de alta frecuencia (HF), las de muy alta frecuencia (VHF), las de frecuencias ultra altas (UHF), etc... y también dentro de las de baja frecuencia distinguimos los infrasonidos (por debajo de los 20 hercios y utilizados por los elefantes), los sonidos audibles por el hombre (entre 20 y unos 20.000 hercios) y los ultrasonidos (por encima de los 20.000 hercios y utilizados por murciélagos y delfines).

Para conseguir transmitir sonidos utilizando las ondas de radio se ideó en principio un sistema mediante el cual la información de la onda sonora "viajara" de alguna manera, implícitamente, en la onda electromagnética de alta frecuencia, llamada PORTADORA, sin que esta última perdiera sus cualidades, algo así como "adjuntando" el sonido a la onda electromagnética o portadora. Pero... ¿Como colocar un sonido, que es como hemos visto una onda de tipo mecánico, en una onda electromagnética? Es como querer esculpir un rostro con gas... ¡¡del todo imposible!!. Por eso, lo que deberemos hacer primero es convertir los sonidos, formados por ondas mecánicas, en ondas o señales electricas para que así tengan la misma naturaleza que la onda electromagnética de radio de alta frecuencia, podamos adjuntarla a ella y pueda viajar con ella hasta donde llegue ésta última. Esto lo podemos conseguir sencillamente con un micrófono.

Llegados aquí ya disponemos de las dos señales necesarias: la llamada portadora de alta frecuencia (o portadora de radiofrecuencia), y la señal de baja frecuencia que hemos recogido del micrófono (el sonido una vez "convertido" en señal eléctrica). Ahora solo nos queda incorporar de alguna manera la señal de baja frecuencia a la portadora de radiofrecuencia. Existen varias maneras de hacerlo, pero la primera vez que se logró se hizo modulando la amplitud de la portadora con la señal de baja frecuencia. Fíjate bién en la portadora sin modular. Se trata de una onda de alta frecuencia y de amplitud constante. Aún no existe en ella ninguna información sonora.

Ahora fíjate en la señal de baja frecuencia que hemos obtenido del micrófono. Observa que se trata de una onda de una frecuencia bastante menor que la anterior. Es una señal eléctrica que oiríamos perfectamente si la aplicáramos a unos altavoces o a unos auriculares. Esa es la señal que debemos incorporar a la portadora de radiofrecuencia modulando su amplitud.

Si ahora, cual escultor y a través de los medios adecuados que ya explicaremos, modificamos la amplitud de la portadora de radiofrecuencia siguiendo los niveles de la señal de baja frecuencia que hemos obtenido del micrófono, obtendremos la señal que representamos a continuación. Se trata de la misma portadora anterior pero modulada en amplitud (AM) con los sonidos que hemos producido delante de nuestro micrófono. Observa que tenemos "repetida" la modulación producida por la señal de baja frecuencia: una en los semiciclos positivos de la portadora y otra en los negativos.

Lo verás mas claro si resaltamos la forma de la onda de baja frecuencia en la parte superior (semiciclos positivos) de la portadora de radiofrecuencia. De hecho, cuando queramos recuperar en el receptor de radio el sonido que de forma primitiva producimos delante del micro, solo aprovecharemos una mitad de la portadora, bien la superior (semiciclos positivos) o la inferior (semiciclos negativos). En el presente ejemplo cogeríamos la parte superior de la portadora para "extraerle" la información que "cabalga" sobre ella y desecharíamos la parte inferior, aunque cualquiera de las dos serviría para nuestro propósito.

Ya solo nos queda eliminar la radiofrecuencia restante y usar la baja frecuencia obtenida de la demodulación de acuerdo a nuestros propósitos. Mas adelante explicaremos el proceso completo de la recepción de señales de radio y por supuesto incluiremos la demodulación con todos sus detalles. Por ahora lo dejamos aquí. Esperamos verte pronto de nuevo en www.radioelectronica.es, tu punto de encuentro.

 
C O M E N T A R I O S   
RE: Las ondas (IV)

#1 Apolonio Arturo Zule » 03-10-2016 01:24

Es muy interesante y enriquece nuestra vida mental el conocimiento que ustedes entregan en forma totalmente desinteresada, se les agradece infinitamente.

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.