Acceso



Registro de usuarios
Contáctenos
Teoría
La resistencia óhmica en los conductores

Como seguramente sabrás, los materiales conductores presentan cierta resistencia al paso de la corriente eléctrica. A veces interesa conocer este dato, ya sea porque manejemos instalaciones de baja tensión y alto consumo, porque estemos tratando con lineas eléctricas de una determinada longitud, o por cualquier otra circunstancia que nos obligue a ello.

Como ya vimos en el artículo dedicado a la resistencia eléctrica, existe una fórmula para calcular la resistencia ohmica de un conductor a partir de su sección, su longitud y de la naturaleza material del mismo.

Esta fórmula es la que volvemos a representar otra vez en la cabecera de este artículo. Quizás te parezca extraña, rara, difícil de entender. Pero no es así, como podrás comprobar con la lectura de este artículo.

Leer más...
Otros Temas Interesantes
Noticias
Videotutorial sobre circuitos serie y paralelo

Subido nuestro primer videotutorial técnico a la zona de descargas.

Se trata de un video, de más de 20 minutos de duración y en alta calidad, que sirve de apoyo al artículo publicado el 9 de enero sobre los circuitos en serie y en paralelo.

Especialmente enfocado hacia el montaje y cálculo de resistencias en serie y en paralelo, este videotutorial servirá de ayuda a los que hayais leído el artículo anterior y os quede aún alguna duda al respecto en la mente.

Estamos seguros de que, una vez que lo veáis, este vídeo va a arrojar luz sobre aquellos puntos que antes no teníais claros con solo la lectura del artículo del blog.

Se ha procurado usar un lenguaje sencillo y fácil de entender para así poder llegar al mayor número de personas posible, de manera que su dificultad sea mínima.

Leer más...
Radioaficionados
Cambiar C.I. de audio a President Taylor ASC (II)

Continuamos ahora con la segunda parte de la información dedicada a la reparación de una emisora de C.B. President Taylor ASC. Como habrás podido observar en la primera parte, hemos querido presentarte estos artículos de la manera más sencilla posible, con multitud de fotografías que aclaran los conceptos explicados en el texto. Hemos intentado que tú, sin ser un profesional, puedas repararte tu propia emisora y... ¡por qué no!... repararle la emisora a tu amigo o compañero de trabajo.

Lo que viene a continuación tiene una importancia capital para que esta avería no vuelva a reproducirse. Deberás seguir los pasos indicados al pié de la letra, sin desviarte lo más mínimo de los consejos que se indican. Generalmente la avería descrita se produce por acumulación de calor en el circuito integrado LA4446. Con el paso del tiempo, la transmisión al chasis de las altas temperaturas que se producen en el interior de este componente no se efectúa de una manera solvente debido principalmente a que la pasta de silicona térmica utilizada para obtener una correcta transmisión del calor desde el integrado hasta el chasis de la emisora se ha secado, amén de que han sido poco generosos con ella. Dicho chasis, junto con la pequeña aleta adaptadora intercalada, hacen las veces de disipadores de este calor.

Pero si quieres saberlo todo al respecto, solo tienes que hacer clic en el botón "Leer completo...".

Leer más...
Miscelanea
Monitor para la batería del automóvil

Es curioso, pero la verdad es que a todos nos ha pasado alguna vez lo mismo. Nos levantamos una mañana de frio invierno, con prisas porque tenemos el tiempo justo para llegar al trabajo (el que tenga esa suerte). Introducimos la llave de contacto de nuestro auto y la giramos. ¡SORPRESA!... el motor de arranque no voltea o lo hace con desgana.

El coche no furula, no arranca... Entonces algunos manifestamos nuestro enfado en un idioma desconocido, emitiendo ciertos sonidos guturales como.... "Grrrrrrrrr!!!!!". Otros, algo más "expresivos", comenzamos a lanzar por nuestra boquita ciertos vocablos malsonantes, dirigidos sobre todo hacia nuestro sufrido auto que ya tiene, como poco, cinco o seis años.

Sin embargo, esta situación la podríamos haber evitado si hubieramos tenido instalado el circuito que describimos en el presente artículo. Se trata de un simpático piloto de color rojo que nos avisará antes de tiempo de que ha llegado la hora de sustituir la batería de nuestro coche.

Si has leido los dos primeros artículos de la sección "Básico" estamos seguros que no vas a tener problemas para asimilar lo que sigue. ¡Vamos allá!

Leer más...
Práctica
Monitor para fusible mejorado

En un artículo anterior de nuestro blog ya abordamos un montaje titulado "Indicador de fusible fundido" mediante el cual tuvimos la oportunidad de estudiar el multivibrador astable.

Posteriormente publicamos otro artículo titulado "Monitor para fusible", en el que presentábamos un circuito mucho más simple que el primero, que iluminaba un led cuando el fusible fundía.

Sin ánimo de ser insistente, os queremos presentar ahora este otro monitor algo más sofisticado que el segundo y menos complicado que el primero, mediante el cual podemos saber de un vistazo si nuestro aparato electrónico está recibiendo la alimentación adecuada, o por contra, está interrumpida por culpa de un fusible defectuoso.

En esta ocasión usaremos un doble diodo LED con cátodos comunes. El encendido del LED de color verde (¡PERFECTO!) nos indicará el funcionamiento correcto del dispositivo, mientras que si el LED que luce es el de color rojo (¡ALARMA!) querrá decir que el fusible está interrumpido.

Debido a la extremada sencillez del circuito creemos que merece la pena integrarlo en alguno de nuestros montajes, según consideremos o no la necesidad o conveniencia de que incorpore la mencionada indicación.

Clica en "Leer completo..." para ver más detalles.

Leer más...
Teoría
Las leyes de Kirchhoff

¡Hay en la actualidad tanta literatura publicada en Internet sobre este tema que unos momentos antes de comenzar a desarrollar este artículo casi optamos por abandonar la labor y pasar a otro asunto!. Sinceramente, durante cierto tiempo experimentamos bastante indecisión para acometer esta iniciativa.

Sin embargo, al final se impusieron las ganas y la voluntad de divulgar unos conocimientos que, en muchísimas ocasiones, aquellas personas interesadas no tienen suficientemente claros.

Efectivamente, nos referimos a las célebres y famosas "Leyes de Kirchhoff", una especie de bestia negra de algunos estudiantes en sus correspondientes exámenes de tecnología o ingeniería, y muro insalvable para algunos aficionados e incluso profesionales de la electricidad y/o la electrónica.

Pero... ¿en realidad son tan complicadas y enrevesadas estas dos leyes promulgadas por el ínclito prusiano Gustav Robert Kirchhoff mientras todavía era un estudiante?... ¿por qué a determinados individuos les cuesta tanto entenderlas?... ¿tan elevado es su nivel de dificultad?.

Con este artículo vamos a hacer que comprendas los entresijos de las dos leyes de Kirchhoff. Te las mostraremos "con pelos y señales". Pero antes es imprescindible que repasemos algunos conceptos básicos de análisis de circuitos eléctricos. ¡Tranquilo...!. Hemos dicho "conceptos básicos" y no un curso completo sobre el tema.

¿Te atreves?.... Pues pasa adentro...

Leer más...
Noticias
Revista 27 MHz - Fascículo 3

Fascículo Nº 3 de la revista "27 MHz" dedicada a la CB (Banda Ciudadana).

Extracto de su contenido: Construir una antena base "Ringo" para CB, teoría de antenas (III), adaptador de antena, diferentes tipos de antenas, frecuencímetro digital, los diodos y sus aplicaciones, código Q, etc...

Leer más...

Las ondas (III)

Hasta ahora hemos desarrollado varias nociones básicas relacionadas con las ondas, las cuales son importantísimas para poder continuar adelante. Aunque no nos lo parezca ya sabemos muchas cosas sobre las ondas, bastante más de lo que saben muchas personas. Hemos visto la mecánica del movimiento ondulatorio, particularmente en un medio físico como el agua, y hemos llegado a entender que lo que se propaga es la vibración o los impulsos vibratorios y no las moléculas del medio en que se produce la onda. Sabemos también el significado de algunos términos relacionados con ellas, como "cresta", "seno", "longitud de onda" y "amplitud".

Pero aún nos quedan por conocer algunos conceptos mediante los cuales vamos a poder comprender términos relacionados con el radioaficionado que oímos casi a diario. Nos referimos a expresiones como "frecuencia", "megahercios", "kilociclos", "megaciclos", etc. Además veremos también, aunque de manera muy básica, como podemos incluir la información sonora en una señal de radiofrecuencia y de que manera, una vez que haya recorrido su camino, podemos volver a extraerla para aplicarla al altavoz y oirla a miles de kilómetros de distancia. Para ello te invitamos a leer este artículo y los dos siguientes para sumergirte mas de lleno aún en el estudio de las ondas. ¿Te atreves?.

En el artículo anterior te explicamos lo que era una "onda completa". Pués bién, otra manera de llamar a la onda completa es "ciclo". Se dice que un movimiento ondulatorio ha completado un ciclo cuando las moléculas del medio en que se produce, partiendo de una posición determinada, se desplazan hacia la posición opuesta y vuelven a la de comienzo. En la figura siguiente puedes observar resaltados tres ciclos diferentes de un mismo movimiento ondulatorio, similares a la representación que hicimos en el artículo anterior relativos a la "onda completa".

Un ciclo tarda en realizarse completamente cierto tiempo, que depende de la velocidad de la vibración de las moléculas que lo está produciendo. A ese tiempo se le conoce como "periodo". Por lo tanto, se denomina "periodo" al tiempo que emplean las moléculas del medio en completar un ciclo. Durante un periodo, la onda recorrerá una distancia igual a su "longitud de onda".

Fíjate que al hablarte del concepto de "periodo" hemos hecho intervenir el factor tiempo. Esa es la diferencia de este último con el ciclo. Aclaremos los conceptos: El ciclo se refiere al comienzo y a la finalización de un movimiento ondulatorio, mientras que el periodo es el tiempo que tarda en completarse ese movimiento o el tiempo que tarda en completarse un ciclo como ya hemos dicho.

Ya estamos preparados para entender el concepto de "frecuencia". Llamamos "frecuencia" al numero de ciclos que se completan en cada unidad de tiempo, que para este menester es el segundo. La frecuencia la podemos expresar en ciclos por segundo, sin embargo es mas común expresarla en "hercios" ya que esta última unidad incluye el tiempo. Como ya explicamos en el artículo dedicado al generador electromagnético si decimos que una onda es de 50 hercios, estamos diciendo que su frecuencia es de 50 ciclos por segundo.

FRECUENCIA, LONGITUD DE ONDA Y VELOCIDAD
Los tres conceptos tratados en el presente subtema están íntimamente ligados entre sí como vamos a ver a continuación. Sabemos lo que es la "longitud de onda". También sabemos lo que es la "frecuencia". Si como hemos dicho, estos dos conceptos están íntimamente relacionados con la "velocidad" la pregunta que se impone es... ¿Podemos hallar la velocidad de propagación de un movimiento ondulatorio conociendo su frecuencia y su longitud de onda? Vamos a verlo.

La velocidad con que se propaga un movimiento ondulatorio es la distancia, en linea recta, que ha recorrido dicha onda en cada unidad de tiempo. Pongamos que la unidad de tiempo es el segundo. De esta manera, si un movimiento ondulatorio recorre en linea recta una distancia de, por ejemplo, 340 metros al cabo de un segundo, se dice que de él que tiene una velocidad de 340 metros por segundo. Si nos fijamos en la luz, que es otra forma de energía ondulatoria, decimos que su velocidad es de 300.000 kilómetros por segundo, queriendo decir con ello que al cabo de un segundo ese rayo lumínico habrá recorrido esa tremenda distancia.

Recordando ahora lo que ya hemos aprendido, sabemos que la longitud de onda es la distancia en linea recta que recorre un movimiento ondulatorio determinado en cada "ciclo" o "periodo". Si no tienes claro esto que acabamos de decir te invitamos a observar los gráficos del segundo artículo de esta serie dedicado a las ondas. Si te fijas en ellos comprenderás enseguida que en un "periodo" o "ciclo" el movimiento ondulatorio recorre una distancia en línea recta que corresponde a su longitud de onda. Esto es interesantísimo porque a partír de este dato, y sabiendo como sabemos que la "frecuencia" es el número de ciclos por segundo, podemos deducir facilmente que éste último parámetro, la frecuencia, también nos indica la cantidad de veces que la onda recorre su propia longitud en linea recta en cada segundo de tiempo.

Lo que hemos querido decir en el párrafo anterior es que si tomamos una onda determinada y multiplicamos su frecuencia expresada en hercios o ciclos por segundo por su longitud de onda expresada en metros, el resultado será los metros que dicha onda ha recorrido en un segundo, o sea, su "velocidad". ¡Fácil!...¿no?. Expresemos esto con una sencilla fórmula matemática:

Cuando se hacen cálculos con estos tres parámetros la frecuencia se representa con la letra "F" o también con la letra griega "ν" (nu), la longitud de onda con la letra griega "λ" (lambda), y la velocidad con la letra "V". Por lo tanto la fórmula de la velocidad de un movimiento ondulatorio quedaría de la siguiente manera:

V = F · λ

Ahora vamos a ilustrar la fórmula anterior con un sencillo ejemplo: Supongamos que estamos oyendo a través de un altavoz un sonido, o sea un movimiento ondulatorio audible, de una frecuencia de 2.500 hercios. Sabemos que la longitud de onda de este sonido es de 13,74 centímetros, o sea 0,1374 metros. Aplicando la fórmula anterior tenemos:

V = 2500 · 0,1374 = 343,50 metros/seg

A partir de la fórmula anterior de la velocidad podemos deducir otras dos relativas a la frecuencia y a la longitud de onda. La frecuencia estaría dada por la división de la velocidad entre la longitud de onda y quedaría de la siguiente manera:

F = V / λ

Y la longitud de onda la obtenemos de la división de la velocidad por la frecuencia. Quedaría así:

λ = V / F

De esta manera, y a partir de la velocidad del sonido y de su longitud de onda podemos hallar su frecuencia:

F = 343,50 / 0,1374 = 2500 hercios

y también a partir de la velocidad del sonido y de su frecuencia podemos calcular cual es su longitud de onda:

λ = 343,50 / 2500 = 0,1374 metros

Hasta aquí este tercer artículo sobre las ondas. En el próximo ahondaremos todavía más en este tema y tocaremos por encima como se realiza la transmisión de una señal de radio modulada en amplitud (AM). ¿Te apuntas? Te esperamos en www.radioelectronica.es, tu punto de encuentro.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.