Acceso



Registro de usuarios
Contáctenos
Teoría
Fuerza y trabajo

Para todo en la vida se requiere esfuerzo y el aprendizaje de la electrónica y la radio no son una excepción. Para comenzar a estudiar esta ciencia se requieren ciertos conocimientos básicos sin los cuales resulta imposible comprender la gran cantidad de fenómenos que se producen en el interior de un equipo de radio, y conseguir que el sonido recogido en el centro emisor (que puede estar a miles de kilómetros) pueda recibirse con asombrosa nitidez en nuestros receptores. Pero no te desanimes... vamos a explicartelo de una forma muy sencilla... ¡Vayamos por partes!.

Para comenzar utilicemos nuestro sentido común (si, es un tópico pero es cierto... el menos común de los sentidos). Para que un receptor de radio funcione ¿que necesita de forma imperiosa?... La electricidad... ¡Muy bién!. Eres muy listo. Seguro que antes de leerlo ya lo habías adivinado. Es la electricidad la que hace posible el proceso de transformación del sonido en ondas electromagnéticas en la emisora y posteriormente convertir estas señales de nuevo en algo audible y entendible por el ser humano en el receptor de radio. Por lo tanto, no se puede concebir que estemos tratando temas de electrónica y radio sin dedicar algunas palabras al estudio de la electricidad como base para poder asimilar los conocimientos subsiguientes.

Leer más...
Otros Temas Interesantes
Noticias
AFHA - Electricidad Teórico Práctica - Tomo 8

Tomo 8 del curso de Electricidad Teórico Práctica de AFHA.

Leer más...
Radioaficionados
Previo para micrófonos electret

Hasta el momento no habíamos hablado de los micrófonos de condensador. Para muchos profesionales de la sonorización, el micrófono de condensador es el máximo exponente en cuanto a calidad se refiere por su gran fidelidad, respuesta prácticamente plana en todo el margen de audiofrecuencias y una relación señal ruido mas que envidiable entre otras características interesantes. No obstante, este tipo de micrófono no está exento de inconvenientes, entre los más importantes cabe destacar su elevado costo.

Sin embargo, para alegría de muchos, existe una variante de micrófono de condensador en el que se unen las buenas cualidades de su predecesor original con un más que asequible precio de mercado. Nos referimos al micrófono electret.

A pesar de que con el micrófono electret se elimina, entre otras, la barrera del precio, hemos de decir que dicho micrófono no puede usarse tal cual en cualquier circuito, ya que la señal que suministra es demasiado baja e incapaz de atacar correctamente al preamplificador existente en la mayoría de dispositivos de audio.

En este artículo vamos a ver algunos detalles sobre este tema y, además, vamos a publicar el esquema eléctrico de un preamplificador especial, muy fácil de llevar a la práctica por cierto, de manera que podamos usarlo en cualquier equipo con una entrada de B.F., incluyendo una emisora de radioaficionado. ¿Te parece buena la idea?. Síguenos.

Leer más...
Miscelanea
Detector de OVNIS (UFO Detector)

A veces nos encontramos con circuitos que nos sorprenden por su simplicidad y por la efectividad con que realizan su trabajo. En este dia hemos querido publicar uno de estos montajes tan atractivos para muchos entusiastas de la electrónica y, al mismo tiempo, aficionados a la llamada "UFOLOGIA".

Presentamos en esta ocasión los detalles técnicos de un equipo de muy fácil construcción con el que podremos detectar en las inmediaciones la existencia de OVNIs (Objetos Volantes No Identificados), también llamados en inglés UFOs (Unidentified Flying Object).

Se ha demostrado que dichos objetos producen picos de energia electromagnética que pueden ser recibidos por circuitos amplificadores con entrada de alta impedancia. Es precisamente este tipo de circuito el que te proponemos como miscelánea y despedida del año 2015.

Los materiales usados para llevar a cabo este montaje son baratos y muy corrientes. Por lo tanto, te serán facilmente localizables en el mercado. ¿Te atreverás a detectar la presencia de OVNIS con él?.

Leer más...
Práctica
Microfono inalámbrico en FM "mini"

Con solo cuatro resistencias, unos pocos condensadores, un transistor y una pila vamos a construir un micrófono inalámbrico en FM de muy reducidas dimensiones.

Somos conscientes de la gran diversidad de circuitos de este tipo que circulan por la red. Sin embargo, muchos de ellos no están suficientemente detallados y a la hora de llevarlos a la práctica son problemáticos. Otros no tienen diseñada la correspondiente placa de circuito impreso, por lo que su montaje resulta bastante fastidioso.

Con nuestro circuito hemos querido llenar el hueco que creemos que falta en este ámbito; conseguir un micrófono inalámbrico en FM sencillo, eficaz, casi miniatura, fácil de implementar y con todos los datos pormenorizados necesarios para poder llevarlo a cabo sin problemas.

La información que corresponde a este artículo se la podrán bajar en formato PDF todos nuestros visitantes, registrados y no registrados, ya que se colgará en la sección de descargas gratis. Agradeceremos mucho su colaboración si hacen comentarios con sus experiencias al respecto.

¿Os apuntais a este reto?

Leer más...
Teoría
Fuerza Electromotriz - Ley de Ohm

Ya hemos mencionado en un artículo anterior la expresión "fuerza electromotriz", la cual se representa como "f.e.m." de forma abreviada. Con respecto a este concepto queremos dejar claro cierto matiz, que quizás no hemos entendido a cabalidad al no haber profundizado lo suficiente en el tema, relativo a su relación con la diferencia de potencial (d.d.p.). ¿Significa lo mismo fuerza electromotriz (f.e.m.) que diferencia de potencial (d.d.p.)? Unas personas creen que si, otros dicen que no, y sin embargo para cuantificar y medir los dos parámetros se utiliza la misma unidad, el voltio. ¿Que piensas tu?.

Por otra parte, en el artículo precedente hemos hablado de la última unidad de medida básica que nos faltaba para comenzar a hacer cálculos con circuitos electrónicos. Nos referimos al ohmio. Tenemos ya claro lo que es la unidad de diferencia de potencial o tensión (V), el voltio. También tenemos claro en nuestra mente lo que es la unidad de intensidad de corriente (I), el amperio. Y, como hemos dicho, recientemente hemos hablado de la unidad de resistencia eléctrica (R), el ohmio. ¿Que esperamos entonces para hablar de la célebre ley de Ohm?. En este artículo comenzamos ya a adentrarnos en el corazón de los circuitos electrónicos, hablaremos de ciertos tipos de generadores y además, de paso, aclararemos algunos conceptos como la diferencia entre corriente continua (C.C.) y corriente alterna (A.C.). ¿Te parece interesante? Pasa dentro, por favor...

Leer más...
Noticias
AFHA - Curso Electrónica, Radio y TV - Tomo 9

Tomo 9 del curso de Electrónica, Radio y Televisión de AFHA.

Leer más...

Las válvulas de vacío II

Una vez que hemos visto la manera en que podemos desarrollar por medios eléctricos el efecto termoiónico, entramos de lleno ahora en la descripción de las válvulas de vacío, las cuales fueron en su tiempo el máximo exponente del citado fenómeno físico en lo que toca a la recepción y emisión de señales de radio entre otras aplicaciones.

Comenzaremos hablando del llamado diodo termoiónico, componente muy usado en los tiempos de los receptores a válvulas como rectificador en fuentes de alimentación y demodulador de señales de R.F. entre otros aspectos, aunque aquí no acaban todas sus aplicaciones.

El diodo termoiónico, también conocido como diodo de vacío, puede considerarse la válvula más elemental y sencilla de todas las que han existido. Fundamentalmente se trata de una ampolla de vidrio completamente cerrada, dentro de la cual se ha practicado el vacío, o sea, que se le ha extraído todo el aire de su interior.

Dispone de dos electrodos, como puede deducirse de su nombre ("di-odo" del griego "dos caminos"), uno llamado ánodo y el otro llamado cátodo, tal y como ocurre en el caso del diodo semiconductor.

Inventada por el físico británico John Ambrose Fleming a principios del siglo pasado, para muchos la invención de aquella primera válvula termoiónica supuso a la sazón el inicio de la era electrónica.

En un principio el cátodo de esta válvula estaba formado por un hilo metálico resistente, al cual se le han soldado dos hilos de un material buen conductor los cuales salen al exterior a través del cristal. Justo frente a él, dentro de la ampolla, se ha colocado una placa metálica, la cual también tiene soldado un hilo conductor que sale al exterior a través del vidrio de la ampolla.

El hilo metálico resistente se llama filamento y, solo en este caso como veremos posteriormente, hace las veces de cátodo del diodo. Es decir, en este tipo de válvula primeriza el propio filamento también es el cátodo. Por este motivo, a esta clase particular de diodo termoiónico se le conoce como diodo de caldeo directo.

La placa metálica, conocida simplemente como "placa", es el ánodo del diodo. A todo el conjunto, incluida la ampolla de vidrio, se le llama diodo termoiónico o de vacío.

Podemos ver el símbolo electrónico utilizado para representar a este diodo en la ilustración que incluimos.

Mas adelante hablaremos de otro tipo de válvula diodo perfeccionada con respecto a esta, la cual está exenta de los inconvenientes que sí tenía la primera debido a que usaba el propio filamento de cátodo, propiciando así la aparición de ciertos problemas si no se tomaban las debidas precauciones.

Tal y como hemos mencionado en la introducción, a los electrodos del diodo termoiónico se les llama de idéntica forma que a los del diodo semiconductor.

Esto es así debido a que sus comportamientos son del todo similares en uno y en otro caso como vamos a ver a continuación.


COMPORTAMIENTO DEL DIODO DE VACÍO

Efectivamente, el diodo termoiónico realiza la misma función que un diodo de cristal o semiconductor. Por ejemplo, puede funcionar como detector, ya que solo permite el paso de corriente en un sentido.

Para comprobar esto vamos a construir un pequeño circuito con solo unos pocos componentes. Montaremos una válvula diodo junto a un amperímetro de corriente contínua con la configuración que vemos en la figura adjunta.

Al filamento (cátodo) le conectaremos una batería capaz de calentarlo lo suficiente para producir en él el efecto termoiónico, y de esta manera que sea capaz de emitir electrones abundantemente (generalmente ha de ponerse al rojo vivo).

Entre uno de los terminales del cátodo o filamento y la placa del diodo, conectaremos otra batería en serie con el amperímetro.

En principio, el borne positivo de esta otra batería, la cual es de una tensión elevada (por lo general mayor de 100 voltios), lo conectaremos a la placa a través de dicho amperímetro. El negativo de la batería lo conectaremos por su parte a uno cualquiera de los terminales del cátodo.

Con esta batería así conectada, la placa resulta ser positiva con respecto al cátodo y produce una irresistible atracción sobre los electrones que salen de este último. El cátodo, por lo tanto, cede estos electrones a la placa a través del vacío creado dentro de la ampolla, sin que absolutamente nada se interponga en su camino.

A propósito de lo anterior cabe decir aquí que es lógico que, para que el diodo funcione correctamente, se tenga que efectuar el vacio en su interior, ya que de lo contrario las propias moléculas de aire constituirían un verdadero obstáculo para los electrones viajeros que intentasen alcanzar la placa positiva.

Si no se hiciera el vacío dentro de la ampolla de cristal los electrones bombardearían a las moléculas de aire de su interior y se verían seriamente frenados. Incluso su trayectoria se desviaría y se impediría que llegaran a su destino, la placa o ánodo, por lo que el funcionamiento del diodo sería defectuoso.

Sigamos adelante una vez aclarado el punto. De la manera que anteriormente hemos explicado, se establece un flujo de electrones que va del cátodo a la placa por dentro de la válvula y desde la placa al cátodo por el circuito exterior a esta, atravesando amperímetro y batería para acabar de nuevo en su ubicación original.

Podemos comprobar la existencia de esta corriente eléctrica con solo mirar el amperímetro, el cual da buena cuenta de ella mediante el desplazamiento de su aguja.

Ahora vamos a invertir la polaridad de esta batería. Su polo negativo lo conectaremos a la placa de la válvula a través del amperímetro, mientras que su polo positivo lo vamos a conectar a uno de los extremos del cátodo (ver ilustración).

En estas circunstancias la placa adquiere polaridad negativa con respecto al cátodo. Los electrones que logran salir despedidos del cátodo debido al efecto termoiónico vuelven otra vez a él, ya que son repelidos por la carga negativa que la placa tiene con respecto al cátodo, al tiempo que son atraidos por este último al tener carga positiva con respecto a la placa. Los electrones no pueden en esta ocasión atravesar el vacío que separa cátodo y ánodo.

Por este motivo, ahora el amperímetro no marcará el paso de absolutamente ninguna corriente eléctrica, permaneciendo su aguja a la izquierda, señalando al cero. La intensidad de corriente a través del circuito es ahora completamente nula.

Con esto queda demostrado que el diodo termoiónico conduce interiormente solo en un sentido, desde el cátodo hacia la placa, y solo cuando al primero lo polarizamos negativamente con respecto a la segunda, que tendrá que ser positiva.


ALGUNAS CONSIDERACIONES

Cuando polarizamos al diodo de vacío de forma inversa, haciendo la placa negativa con respecto al cátodo, los electrones que salen de este último vuelven a él debido al campo eléctrico creado entre los dos electrodos. Son repelidos por el potencial negativo de la placa y atraidos por el positivo del cátodo.

En ese momento, el número de electrones que salen del cátodo es igual al número de los que vuelven a él, formándose a su alrededor una verdadera "nube de electrones", donde coexisten tanto los que salen como los que entran. A esta "nube" de cargas negativas se la conoce como "carga espacial" o "carga de espacio".

Son precisamente los electrones de la carga espacial del cátodo los que la placa, cuando es positiva con respecto a aquél, atrae hacia ella para producir la corriente a través del diodo. A esta corriente, que pudimos medir con el amperímetro en el experimento anterior, se le conoce como corriente de placa.

Otro punto importante a tener en cuenta es que, a los diodos de caldeo directo, es decir, los que hemos estudiado hasta el momento, había que calentarle el filamento con corriente continua, ya que al ejercer este al mismo tiempo de cátodo, el rizado de la corriente alterna podía transmitirse a la corriente de placa, provocando un zumbido indeseable.

Para evitar este efecto y hacer al cátodo del diodo completamente independiente de su filamento, aparecieron los llamados diodos de caldeo indirecto.

En estos últimos tubos de vacío, el filamento queda recubierto por un pequeño cilindro metálico que resulta ser el verdadero cátodo. Este cilindro es calentado por el filamento, sin que exista ningún tipo de contacto entre ellos, y es el encargado de provocar la emisión de electrones. En este caso el filamento única y exclusivamente ejerce la función de elemento calefactor.

El funcionamiento del diodo termoiónico de caldeo indirecto es mucho más seguro y fiable que el de su predecesor. En la ilustración adjunta puedes ver su símbolo.

Aquí vamos a parar por el momento el estudio de estas válvulas termoiónicas. Como ves, la profundidad en la que nos hemos zambullido es escasa, ya que creemos que debido a que su uso en la actualidad no es masivo, un estudio más profundo de estos componentes electrónicos carecería de interés práctico.

Hasta la próxima, nos vemos aquí en Radioelectronica.es, tu punto de encuentro.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.