Acceso



Registro de usuarios
Contáctenos
Teoría
El receptor elemental (V)

Continuamos con la descripción del receptor elemental. Ya casi hemos llegado a nuestra meta. Solo nos faltan los conocimientos relativos al selector de frecuencias para tener una idea exacta del funcionamiento de nuestro sencillo equipo de radio, y también una idea aproximada del funcionamiento de los modernos receptores actuales. Para ello es absolutamente necesario que continuemos estudiando el comportamiento del condensador, en esta ocasión en circuitos de corrientes alternas, para lo cual nos vamos a ayudar de un pequeño truco.

Como estudiaremos más adelante, los efectos que produce un condensador conectado en paralelo con una bobina o solenoide, nos da la posibilidad de seleccionar la frecuencia de una señal de radio para usarla con el propósito de oir el "contenido" de su modulación, rechazando el resto de señales que no nos interesen en ese momento.

Aunque lo que realmente ocurre "dentro" de los circuitos resonantes (así se llama a la bobina que tiene un condensador en paralelo con ella) es algo relativamente complejo, creemos que merece la pena que te adentres en este conocimiento, ya que ello te va a permitir comprender el funcionamiento de los circuitos que manejan la señal de R.F. en un receptor de radio moderno. ¿Te atreves a continuar?.

Leer más...
Otros Temas Interesantes
Noticias
AFHA - Curso Electrónica, Radio y TV - Tomo 5

Tomo 5 del curso de Electrónica, Radio y Televisión de AFHA.

En este quinto tomo se habla del sistema de recepción por excelencia, el superheterodino de AM, condensadores, bobinas, circuitos resonantes, amplificadores selectivos, amplificadores en cascada, receptor de radiofrecuencia sintonizada, heterodinaje y modulación, osciladores, paso conversor, frecuencia imagen, amplificador de F.I., control automático de sensibilidad, etc...

Leer más...
Radioaficionados
Receptor a reacción para Onda Corta (II)

Continuamos con la segunda parte de este interesante tema que trata de la construcción de un sensible receptor regenerativo con escucha en altavoz, constituido por solo dos componentes activos; 1 transistor y 1 circuito integrado.

A pesar de incorporar tan pocos componentes estamos seguros que, aquellos que se aventuren a construirlo, obtendrán una tremenda satisfacción cuando al ponerlo en marcha puedan oir una gran cantidad de emisoras, incluyendo aquellas de paises muy alejados del nuestro.

Una vez que llevemos a la práctica este circuito, montando en su correspondiente placa de circuito impreso todos los componentes, podremos instalarlo en el interior de una caja a la que habremos añadido los controles necesarios para su uso y manejo en las mejores condiciones, e incluso fabricarle una bonita carátula, lo que le dará un excelente aspecto.

El circuito puede alimentarse con pilas corrientes ya que su consumo ciertamente es muy bajo. De esta manera tendremos la oportunidad de llevarlo con nosotros a cualquier parte y lo convertiremos en un equipo portable, aunque si pensamos usarlo únicamente en casa quizás sea mejor incorporarle una pequeña fuente de alimentación para conectarlo a la red de distribución eléctrica.

En el artículo anterior ya explicamos el principio de la "reacción" o "regeneración" de señales de alta frecuencia. No obstante, aún no hemos dicho nada sobre el funcionamiento detallado de nuestro receptor. Vayamos al grano entonces.

Leer más...
Miscelanea
La circunferencia, el círculo y el número PI (π)

La mayor parte de las personas que vivimos en paises desarrollados, quizás porque estamos acostumbrados a obtenerlo todo con suma facilidad y/o que las cosas vengan a nosotros como caídas del cielo, a menudo las damos por sentadas de manera automática.

Practicamente en ningún momento nos preguntamos porqué algo es o se produce de una determinada manera. Nos basta con saber que tal o cual cosa es como es y punto, lo aceptamos sin reservas.

Algo así nos ha ocurrido a muchos cuando asistíamos a la escuela, en épocas pasadas. ¿Recuerdas cuando aprendiste la fórmula para hallar la longitud de la circunferencia?. ¿O cuando te enseñaron la fórmula para calcular la superficie del círculo?. Todos las aceptamos sin pestañear, y pocos fuimos los que nos preguntamos de donde habia salido el famoso número PI (π). Muchos daban por sentado que aquello era así porque lo decía nuestro profesor de matemáticas y se acabó.

Pero en realidad, esas conocidas fórmulas han salido de algún sitio o, mejor dicho, han sido promulgadas por una o varias personas después de haber dedicado mucho tiempo y esfuerzo al estudio de estas figuras geométricas.

¿Te gustaría saber más sobre este tema y conocer como se han llegado a obtener las mencionadas fórmulas y como están relacionadas entre ellas?... ¡Pues clica en "Leer completo..." ya!.

Leer más...
Práctica
Microfono inalámbrico en FM "mini"

Con solo cuatro resistencias, unos pocos condensadores, un transistor y una pila vamos a construir un micrófono inalámbrico en FM de muy reducidas dimensiones.

Somos conscientes de la gran diversidad de circuitos de este tipo que circulan por la red. Sin embargo, muchos de ellos no están suficientemente detallados y a la hora de llevarlos a la práctica son problemáticos. Otros no tienen diseñada la correspondiente placa de circuito impreso, por lo que su montaje resulta bastante fastidioso.

Con nuestro circuito hemos querido llenar el hueco que creemos que falta en este ámbito; conseguir un micrófono inalámbrico en FM sencillo, eficaz, casi miniatura, fácil de implementar y con todos los datos pormenorizados necesarios para poder llevarlo a cabo sin problemas.

La información que corresponde a este artículo se la podrán bajar en formato PDF todos nuestros visitantes, registrados y no registrados, ya que se colgará en la sección de descargas gratis. Agradeceremos mucho su colaboración si hacen comentarios con sus experiencias al respecto.

¿Os apuntais a este reto?

Leer más...
Teoría
Cálculos con resistencias I

En un artículo anterior ya hemos hablado sobre la ley de Ohm y hemos desarrollado las tres fórmulas a las que podemos acudir para solucionar un determinado problema. Sin embargo, eso no basta en la mayoría de las situaciones, siendo necesario que adquiramos la soltura necesaria para afrontar con éxito los casos reales a los que nos veremos obligados a hacer frente.

Para adquirir esa soltura, no nos queda mas remedio que practicar, practicar y practicar. ¿Recuerdas aquella frase que mencionamos en uno de nuestros artículos?; "Teoría sin práctica es parálisis y práctica sin teoría es ceguera". Para que no nos quedemos "paralizados", tenemos que habituarnos a ensayar con la ley de Ohm a poco que tengamos oportunidad.

Bién es verdad que a veces la práctica necesaria para el ejercicio de alguna disciplina es complicada de conseguir, sobre todo en los tiempos difíciles que nos ha tocado vivir, en los que las dificultades a veces nos agobian y no nos queda apenas tiempo libre.

Para intentar paliar esto en lo posible, este artículo irá acompañado de un videotutorial que los usuarios premium podrán bajar de la zona de descargas. Esperamos que resulte de vuestro agrado. ¡Comencemos a calcular!.

Leer más...
Noticias
Versión 1.02 del calculador para Ebay

Volvemos a subir una nueva versión del calculador para vendedores de Ebay debido a la modificación de tarifas que la plataforma de compra-venta ha iniciado a partir del dia 2 del presente mes de octubre. Las implantación de las nuevas tarifas se reflejará en la necesidad de aplicar precios de venta más altos para todo tipo de vendedores en general, a pesar que Ebay ha intentado "maquillar" dicha subida con unos pocos anuncios gratis al mes para vendedores particulares.

Leer más...

Las válvulas de vacío VIII

Llegamos al artículo número ocho y último dedicado a las válvulas de vacío. Estudiaremos en él dos de las más usadas en su dia, junto con el triodo. Nos referimos al tetrodo y al pentodo termoiónicos.

Aunque existían válvulas de más electrodos, las mismas eran utilizadas principalmente en montajes muy específicos y particulares, por lo que creemos que con los dos tipos mencionados cumplimos ampliamente con nuestro objetivo de dar a conocer superficialmente estos antiguos componentes electrónicos.

Además, en la actualidad aún se siguen empleando tanto triodos como pentodos en ciertas aplicaciones, por ejemplo en determinados amplificadores lineales de RF. Incluso hemos podido ver algunos amplificadores de audio actuales fabricados con estos componentes ya que, según la opinión de muchos expertos en sonido, la calidad, fidelidad y limpieza que se obtiene mediante tubos de vacío es superior a la conseguida mediante el uso de semiconductores.

Sin embargo, el resto de válvulas de más electrodos han caido en completo desuso, a excepción de las que montan los receptores que se fabricaron por aquellos años y que aún continúan funcionando en la actualidad, por lo que no serviría de gran cosa escribir un artículo dedicado a ellas.

Primero vamos a hablar un poco de un tipo de válvula con la que se podía obtener una amplificación de potencia mayor que con el triodo, a igualdad de tamaño. Bién es verdad que con los llamados "triodos de potencia" ya podian conseguirse amplificaciones considerables, pero a costa de aumentar físicamente su tamaño de manera exagerada, lo que dejaba de ser práctico.

Para conseguir una elevada potencia de salida en una etapa final se requería que el triodo manejara variaciones de tensión y corriente muy elevadas en su placa.  Debemos de tener en cuenta que la rejilla del triodo nunca debería hacerse positiva cuando se montaba como amplificador, para que la distorsión introducida no superase un determinado nivel.

Por este motivo, dicha tensión de rejilla a lo sumo podía llegar a los CERO voltios. Sin embargo, y aunque cuando la rejilla del triodo pasa por cero voltios su tensión de placa desciende a unos mínimos, esta tensión mínima no era suficientemente baja, y aquí es donde residía el problema.

La anterior era una de las grandes limitaciones del triodo, ya que para cero voltios en su rejilla la tensión de placa en ocasiones no bajaba de 150 voltios en los triodos de potencia. Esto hacía que el tramo de tensiones de funcionamiento en la placa de estas válvulas comenzara a partir de esa tensión y terminara con tensiones todavía más altas durante la actividad normal.

El proyecto de los investigadores era reducir esta tensión mínima en placa cuando la rejilla estuviera a cero voltios y aumentar de esta manera el tramo de tensiones que la válvula era capaz de manejar en este electrodo. No es lo mismo que la válvula trabajara desde 100 hasta 160 voltios, lo que supone una variación de solo 60 voltios, a que lo hiciera desde 40 a 160 voltios, con lo que podíamos obtener una variación de salida de hasta 120 voltios, que es justo el doble.

Bién es verdad que la tensión de placa podía aumentarse por arriba hasta llegar incluso a los 600 voltios y más en algunos casos, con lo que se conseguía un intervalo de tensiones superior. Sin embargo, esto traía como consecuencia que la válvula tuviera que disipar una potencia excesiva. Recordemos que la potencia de disipación se obtiene mediante la fórmula "P = V x I", lo cual significa que cuanto más alta sea la tensión (V), más alta será la potencia disipada (P).

Estos altos niveles de potencia ponían en peligro la integridad de la válvula ya que la placa se calentaba en exceso por el bombardeo de electrones que sufría con tan altas tensiones, llegando en algunos casos límite a ponerse al rojo vivo e incluso fundirse si el diseño del circuito no era cuidadoso.

Esto último es lo que obligaba a los fabricantes a construir triodos de potencia de grandes dimensiones, con placas de un tamaño muy generoso, con la idea que pudieran disipar la mayor cantidad de calor posible. Una placa de más tamaño significaba que podía transmitir más calor al medio ambiente, y por lo tanto expulsarlo de la válvula más fácilmente.

La solución a este problema comenzó a vislumbrarse cuando a alguien se le ocurrió la felíz idea de añadirle una segunda rejilla al triodo, por lo que aquella válvula cambió de nombre a uno más adecuado a su nueva estructura y se le llamó "tetrodo", del griego "cuatro caminos". ¿Que función ejercería esta segunda rejilla y como se conectaba?.

LA IDEA DEL TETRODO
Con la adición de la segunda rejilla al triodo se deseaba mejorar considerablemente el rendimiento de la válvula. El plan era conectar la nueva rejilla, que se quedó en llamar "rejilla pantalla" quedando la denominación de la primera como "rejilla de control", a un potencial positivo. Lo que se esperaba conseguir era un tetrodo ideal, una válvula perfecta.

Los científicos pensaron de la siguiente manera. Al estar más cerca del cátodo que la propia placa, la rejilla pantalla ejercerá un mayor dominio sobre los electrones, los cuales se verán sometidos a una pre-aceleración que hará que el potencial de la placa no tuviera que ser tan elevado cuando la rejilla de control pasara cerca de los cero voltios.

La rejilla pantalla se construía de manera que, vista desde el cátodo, fuera algo parecido a "la sombra" de la rejilla de control. Los electrones, durante su éxodo hacia la placa, "no ven" a la rejilla pantalla aunque si que notan su influencia.

De esta manera, la circulación de electrones no se ve afectada por la presencia física de la rejilla adicional, sino solo por el campo eléctrico de la tensión positiva que se le aplica. Podemos decir que los electrones "se cuelan" entre los hilos de la rejilla pantalla y continúan su camino hacia la placa.

Teóricamente, con tensiones de placa reducidas, las intensidades de corriente a su través deberían ser mucho más elevadas en el tetrodo que en el triodo gracias a la acción de la rejilla pantalla, con lo que se aprovecharía bastante más el tramo de funcionamiento lineal de la válvula y como consecuencia, se podrían obtener mayores potencias de salida con tamaños más pequeños del componente, ya que la potencia de disipación de la válvula bajaría de forma importante al no tener que soportar tan altas tensiones en su placa.

Los científicos se las prometían muy felices. Sin embargo, se dieron de bruces contra la realidad. El tetrodo no funcionaba como habían deducido en la teoría. ¿Por qué?.

LA EMISIÓN SECUNDARIA
Una vez que todo quedó preparado comenzaron las pruebas con el tetrodo, y se vió algo con lo que no se había contado. Mientras la tensión de placa se mantuviera por encima de la de la rejilla pantalla todo iba sobre ruedas. Sin embargo, y a pesar de que precisamente la idea era usar tensiones de placa menores a las que se utilizaban en el triodo, cuando eso ocurría parecía que los electrones se volvían locos.

Efectivamente esa era la impresión, ya que particularmente existe un tramo de funcionamiento del tetrodo en el que al aumentar la tensión de placa, la intensidad a través de la válvula baja en vez de subir y viceversa, es decir, al disminuir la tensión de placa la intensidad sube en vez de bajar.

Esto era justo lo contrario a lo que exponían todas las teorías existentes hasta el momento. Lo lógico era que al aumentar la tensión positiva de la placa, manteniendo la rejilla de control a cero voltios y la rejilla pantalla a un potencial fijo, la corriente a través del tetrodo aumentara, no disminuyera. Al mismo tiempo, si la tensión de placa disminuye, la intensidad debe bajar, no subir. Para que puedas entender esto mejor, hemos incluido un gráfico de lo que se esperaba encontrar con el tetrodo ideal y lo que se encontraron con el tetrodo real.

¿Por qué demonios ocurría esto? La razón debemos buscarla en un fenómeno llamado "emisión secundaria", el cual no es exclusivo del tetrodo ya que también ocurre en el triodo, solo que en este último su efecto es nulo por las razones que vamos a explicar a continuación.

Como hemos estudiado en artículos anteriores, sabemos que cuando calentamos un metal a altas temperaturas se produce una emisión de electrones. Es el llamado efecto termoiónico ¿recuerdas?. Como sabes, el cátodo de las válvulas de vacío trabaja bajo este principio. Sin embargo, la emisión de electrones en un metal puede producirse por otros motivos distintos al calentamiento, por ejemplo por el llamado "bombardeo de electrones".

Pensemos lo que ocurre cuando un electrón, lanzado a gran velocidad desde el cátodo de un tetrodo, alcanza la placa. Lo más probable es que al llegar penetre en el metal y colisione contra la estructura atómica del electrodo receptor. El electrón, debido a estas colisiones, perderá la energía dinámica que contenía, pero no sin producir cierto efecto en los electrones de la placa.

Debido a la gran velocidad de penetración, el electrón que llega a la placa producirá una serie de violentos choques con otros electrones, de manera que alguno de estos últimos se verán impulsados a abandonar el metal y serán arrojados al exterior. Para ilustrarlo puedes imaginarte el efecto de la salida de un juego de billar americano. Mira el siguiente video.

Como puedes apreciar en el vídeo, la violencia del choque hace que las bolas que en principio ocupaban un sitio en el centro de la mesa salgan disparadas en distintas direcciones. Lo mismo ocurre con el electrón que bombardea la placa. Si ahora pensamos que la placa no está bombardeada por un solo electrón sino por millones de ellos, podemos hacernos una idea del efecto que esto causa en el tetrodo.

Debido a este bombardeo desde el cátodo, se produce una emisión de electrones que parte desde la placa. Es la llamada "emisión secundaria". Dicha emisión secundaria se opone a la corriente normal a través de la válvula ya que tiene sentido contrario. Sin embargo, mientras la tensión de placa sea más alta que la tensión de la rejilla pantalla los "electrones secundarios" tienden a volver de nuevo al ánodo, debido a la mayor atracción que ejerce sobre ellos el campo eléctrico producido por una tensión superior en dicho electrodo. En este caso no se nota su efecto.

No obstante, con tensiones anódicas bajas, la emisión de electrones secundarios no vuelve a la placa, ya que ahora la tensión de rejilla pantalla es superior. Entonces dichos electrones secundarios son atraidos por la rejilla pantalla y absorbidos por ella, con lo que la intensidad de corriente anódica baja de forma considerable al principio del tramo de funcionamiento de la válvula, con tensiones bajas de placa.

En el triodo también existe la emisión secundaria. Sin embargo su efecto es nulo, ya que el electrodo al que se dirigen los electrones secundarios es la rejilla de control, la cual está polarizada negativamente. Por lo tanto, dichos electrones secundarios son "rechazados" y de nuevo ponen camino hacia la placa, lugar de donde salieron. El efecto en el triodo por lo tanto queda completamente cancelado, y la corriente anódica no experimenta ninguna reducción.

¿Como solucionar el problema  de la emisión secundaria del tetrodo? Aunque existían un par de soluciones válidas, la más usada era la adición de una tercera rejilla al tetrodo, con lo que se convirtió en una válvula de cinco electrodos. Su denominación cambió al cambiar su estructura y se le llamó válvula "pentodo", lo que en griego significa "cinco caminos".

EL PENTODO ~ LA TERCERA REJILLA
La adición de una nueva rejilla al tetrodo solucionó por completo el problema de la emisión secundaria. Esta rejilla se situó entre la placa y la propia rejilla pantalla, y estaba conectada directamente al cátodo de la válvula por lo que siempre permanecía negativa con respecto a la placa.

Tal y como ocurrió con la rejilla pantalla, el nuevo electrodo llamado "rejilla supresora", se situó como si fuera la sombra de la anterior. Si pudiésemos mirar a la placa desde el cátodo solo veríamos la rejilla de control y la placa al fondo, ya que tanto la rejilla pantalla como la supresora quedaban ocultas físicamente por la primera rejilla, notándose solo los efectos que producían.

Y hablando de efectos, la rejilla supresora no le afecta para nada a los electrones primarios que salen del cátodo, ya que estos han adquirido tal velocidad gracias a la aceleración producida por la rejilla pantalla que pasan a su través como una exhalación.

No ocurre lo mismo con los electrones secundarios, los cuales son mucho mas lentos al salir de la placa, por lo que el campo eléctrico negativo de la rejilla supresora los repele y los vuelve a introducir en la placa de nuevo. Podemos decir que la nueva rejilla "suprime" a los electrones secundarios, de ahí su nombre, y los empuja otra vez hacia el ánodo de donde salieron.

Lo habitual era que la rejilla supresora estuviera conectada internamente al cátodo del pentodo, pero había circunstancias especiales que hacían necesario que no fuera así, dejándose libre en algunas válvulas la conexión de la supresora para determinadas aplicaciones específicas.

Ahora sí que se había conseguido una válvula que cumplía perfectamente con las espectativas que se tenían en un principio. Su rendimiento era bastante superior al del triodo al usar tramos de amplificación con tensiones de placa muy bajas, del orden de los 30 o 40 voltios en algunos casos.

No obstante, en las aplicaciones que necesitaban una gran amplificación, se seguían fabricando pentodos de gran tamaño para poder disipar el calor producido por la potencia desarrollada.

El otro método de supresión de la emisión secundaria, menos utilizado, consitía en añadir al tetrodo, en lugar de la rejilla supresora, dos "placas concentradoras" conectadas al cátodo. Estas placas envuelven casi por completo al cátodo, a la rejilla de control y a la rejilla pantalla, dejando solo unas pequeñas aberturas por las que los electrones alcanzan la placa.

Esta configuración obliga a los electrones primarios que salen del cátodo a concentrarse formando haces muy densos, lo que produce una fuerza tal que es capaz de "empujar" a los electrones secundarios impidiendo que estos abandonen la placa.

Como esta última válvula continúa teniendo solo dos rejillas, se considera que solo tiene cuatro electrodos y por lo tanto se le sigue denominando tetrodo. Su nombre específico es "tetrodo de haces dirigidos".

Con este artículo damos por terminado el estudio de las válvulas de vacío o termoiónicas. Esperamos que hayas disfrutado con su lectura tanto como nosotros lo hemos hecho al desarrollarlos. Si lo deseas, puedes dejarnos un comentario.

 
C O M E N T A R I O S   
muy interesante

#3 Manuel Malingre Coma » 24-11-2021 13:00

Util para refrescar conocimientos.

RE: Las válvulas de vacío VIII

#2 gerardo » 16-05-2013 05:11

es una excelente informacion referente a dichas valvulas, esperemos que mejoren circunstancialmente los canales de radio, sobre todo que no sean necesariamente los locales.

completisimo y muy facil de entender

#1 ivan » 03-05-2013 13:32

Maravilloso!!, didactico y muy facil de asimilar.

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.