Acceso



Registro de usuarios
Otros Temas Interesantes
Contáctenos
Teoría
La resistencia eléctrica

Seguramente te habrás dado cuenta de que cada vez que hemos hablado de circulación de la corriente electrica hemos dicho que lo hace a través de un conductor o un hilo conductor. A nadie se le ocurriría hacer un circuito con hilo de nylon porque jamás conseguiría que la corriente eléctrica circulara a través de él. Al hablar de hilos conductores nos referimos a hilos o cables metálicos ya que son este tipo de materiales los que mejor conducen la corriente eléctrica. De hecho existen materiales que permiten el paso de la corriente a su través sin apenas ninguna dificultad. Estos materiales son los llamados CONDUCTORES y la plata se lleva la palma de todos ellos siendo el metal mejor conductor que existe.

Sin embargo, el metal conductor más utilizado en instalaciones eléctricas no es la plata, como cabe suponer debido a su alto precio, sino el cobre. Sin ser tan buen conductor como la plata, su precio mas bajo y su gran ductilidad (propiedad de poder deformarse de forma continuada sin romperse) que permite obtener hilos muy finos, hacen del cobre el conductor eléctrico por excelencia en la mayoria de las industrias. En este artículo vamos a hablar de los buenos y los malos conductores de la electricidad, pasando por los que están en la zona intermedia. ¿Nos sigues?.

Leer más...
Noticias
Curso de ELECTRÓNICA BÁSICA 03

PUBLICADO EL CAPÍTULO 3

Publicado el tercer capítulo de nuestro CURSO DE ELECTRÓNICA BÁSICA. Puedes visualizarlo en este mismo artículo.

Leer más...
Radioaficionados
Medidor de campo para Banda Ciudadana (27 MHz)

Justo hace ahora cuatro años publicamos en nuestro blog un artículo titulado "Medidor de campo sencillo". Se trataba de un pequeño dispositivo con el que podíamos evaluar el nivel de un campo electromagnético de una amplia gama de frecuencias, al usarse un diseño aperiódico exento de circuitos de sintonía.

Debido en parte a esta última particularidad, la sensibilidad del aparato no era precisamente una de sus mejores características aunque, eso si, cumplía perfectamente su cometido y permitía el ajuste de una gran diversidad de equipos transmisores. No obstante, en algunos casos se echaba de menos la mencionada falta de sensibilidad.

En este artículo os presentamos otro modelo de medidor de campo, en esta ocasión para la Banda Ciudadana (27 MHz), aunque mediante un ligero ajuste puede usarse entre 26 y 30 MHz. Su sensibilidad es bastante superior a la del primero.

Además tiene la posibilidad de poder usarse en otras gamas de frecuencia mediante el intercambio de la bobina de sintonía. ¿Te interesa?.

Leer más...
Miscelanea
Tira a matar - Juego de reflejos

¿Con que rapidez responde tu cuerpo a los impulsos externos?. ¿Cuanto tiempo necesitarías para reaccionar ante un peligro inminente?. Si oyes un disparo cercano ¿tus reflejos te hacen "salirte del pellejo"?.

Para poner a prueba la rapidez de respuesta a tus estímulos nerviosos hemos ideado un pequeño circuito con el que podrás medirte en este aspecto con otra persona, y de paso cultivar la faceta "reflexológica" del ser humano. Se trata de algo así como un duelo, lógicamente sin pistolas y sin balas pero eso si, al ser del todo electrónico, con botones y con luces.

Una vez construido el dispositivo se dispondrán dos botones de mayor o menor tamaño, los cuales accionarán sendos pulsadores conectados a nuestro circuito. Al oir una señal, los dos participantes se apresurarán a pulsar su correspondiente botón.

El más rápido de los dos se llevará el gato al agua y ganará el juego. Su victoria quedará fehacientemente constatada porque la luz que le corresponde indicará ese hecho.

Comenzamos con esta reseña una nueva categoría de artículos a la que llamaremos "Miscelánea", en la que tendrán cabida una amplia variedad de temas con multitud de contenidos. Esperamos que esta novedad sea de tu agrado.

Leer más...
Práctica
El teléfono yogur y su versión electrónica

Es muy probable que cuando éramos niños hayamos jugado alguna que otra vez con el llamado "teléfono yogur", probablemente fabricado por nosotros mismos ya que su construcción no ofrece prácticamente ninguna dificultad.

Con solo un par de recipientes de plástico vacíos, que casi siempre se conseguían una vez que habíamos consumido los yogures (de ahí el nombre por el que se le conoce normalmente), unos metros de hilo suficientemente resistente y poco más, teníamos un juguete con el que pasábamos horas y horas de ocio y diversión.

Mientras uno de nosotros aproximaba el bote de yogur a su oreja el otro lo hacía con el que le correspondía a su boca y comenzaba la "transmisión" del mensaje. Y aunque la distancia entre los dos interlocutores no podía exceder de algunos metros, la transmisión de la "fonía" que se conseguía con este artilugio, aunque débil, era relativamente buena.

La verdad es que aquellos eran otros tiempos. Nos divertíamos con cualquier cosa. Y aunque hoy este juguete quizás le siga llamando la atención a los más pequeños, no hay que olvidar que vivimos en la era de la electrónica y casi todos esperamos algo más. De ese "algo más" hablamos en este artículo. Vamos a presentarte la versión electrónica del teléfono yogur. ¿Quieres ver de que se trata?. ¡Adelante!.

Leer más...
Teoría
Las válvulas de vacío II

Una vez que hemos visto la manera en que podemos desarrollar por medios eléctricos el efecto termoiónico, entramos de lleno ahora en la descripción de las válvulas de vacío, las cuales fueron en su tiempo el máximo exponente del citado fenómeno físico en lo que toca a la recepción y emisión de señales de radio entre otras aplicaciones.

Comenzaremos hablando del llamado diodo termoiónico, componente muy usado en los tiempos de los receptores a válvulas como rectificador en fuentes de alimentación y demodulador de señales de R.F. entre otros aspectos, aunque aquí no acaban todas sus aplicaciones.

El diodo termoiónico, también conocido como diodo de vacío, puede considerarse la válvula más elemental y sencilla de todas las que han existido. Fundamentalmente se trata de una ampolla de vidrio completamente cerrada, dentro de la cual se ha practicado el vacío, o sea, que se le ha extraído todo el aire de su interior.

Dispone de dos electrodos, como puede deducirse de su nombre ("di-odo" del griego "dos caminos"), uno llamado ánodo y el otro llamado cátodo, tal y como ocurre en el caso del diodo semiconductor.

Leer más...
Noticias
AFHA - Curso Electrónica, Radio y TV - Tomo 6

Tomo 6 del curso de Electrónica, Radio y Televisión de AFHA.

En este tomo se habla de modulación de amplitud y modulación de frecuencia, un sencillo emisor de FM, receptor elemental de FM, el discriminador, interferencias, ruidos, banda estrecha, banda ancha, limitadores, detectores de FM, detector de relación, receptores mixtos AM-FM, desacentuación, amplificadores de FI para FM, sintonizador típico de FM, indicador de sintonía, antenas para FM, el dipolo simple, dipolo doble plegado, linea de transmisión, antenas interiores, etc...

Leer más...

Las ondas (II)

Cuando hemos hablado del movimiento ondulatorio producido por la piedra que cae en el estanque de aguas tranquilas no hemos ahondado demasiado en su mecánica ni en sus peculiaridades. El estudio de tales ondas puede darnos muchas ideas y proporcionarnos algunos conocimientos relacionados con el resto de ondas, incluidas las ondas electromagnéticas utilizadas en las transmisiones de radio. Para un observador poco experimentado, las ondas producidas por la piedra al caer no son mas que unas pocas circunferencias que se dibujan en el agua y que se alejan del punto en donde cayó el pedrusco, aumentando progresivamente de diámetro y disminuyendo de intensidad. Sin embargo, hay mucha más información implícita en esas circunferencias de la que se ve a simple vista, solo que debemos conocer la manera de extraerla para así poder asimilarla.

Una vez dicho esto surgen algunas preguntas relacionadas con lo expuesto hasta el momento. ¿Que métodos podemos utilizar para conocer estas ondas mas a fondo? ¿Que podemos aprender de ellas que aplique también a los demás tipos de ondas? ¿Cuales son sus características principales? Todas las respuestas vienen a continuación.

Vamos a suponer que nos hemos fabricado un lago especial, o mejor dicho, un depósito de agua especial con unas dimensiones muy grandes y paredes de cristal, algo así como una pecera inmensa. Ahora, y como un observador de lujo, vamos a repetir nuestro experimento de la piedra que cae al agua pero en esta ocasión situándo nuestros ojos al mismo nivel que el líquido elemento, de manera que vamos a poder ver exactamente qué pasa cuando la piedra cae en el agua. Lo entenderemos mucho mejor si repetimos el párrafo del artículo anterior que tiene que ver con lo que venimos diciendo y vemos una ilustración relativa a ello:

En el momento del choque de la piedra con el agua esta es obligada a desplazarse violentamente y se crea un vacío en la superficie del lago. Parte del agua que ocupaba esta cavidad asciende por encima del nivel que el lago tenía cuando estaba en reposo lo que hace que se forme una pared alrededor del punto donde ha caido la piedra, pared que supera en altura el nivel normal del agua del estanque. El agua que ha subido por encima del nivel de reposo del lago vuelve a caer y se coloca ahora por debajo del nivel de reposo, provocando con ello una nueva subida del agua circundante y una nueva pared, lo que significa otra nueva onda, que otra vez supera el nivel normal del agua. El proceso se repite mermando su intensidad progresivamente debido al peso del agua, y por lo tanto a la resistencia que esta opone para ser desplazada, llegando a anularse completamente la formación de estas ondas transversales.

Ahora si que podemos ver perfectamente la onda producida por la piedra al caer. Se trata de una onda de las de tipo "mecánico" que, como dijimos en el artículo anterior, necesitan de un medio para propagarse y en este caso dicho medio es el agua. Entendemos que la onda no es la circunferencia completa que vemos formarse en el lago sino una sección de dicha circunferencia. En el dibujo de la parte superior estamos viendo seccionadas un buen número de esas circunferencias y podemos apreciar la onda formada en todo su esplendor. Dicha onda aparece como una linea ondulada, practicamente con forma senoidal. Se trata del mismo movimiento ondulatorio que vimos en el video que comentamos en el artículo anterior el cual se produce usando como medio de transmisión un muelle lo suficientemente largo y elástico. En este video parece que el muelle se desplaza rápidamente en toda su longitud hacia la parte fija situada en el otro extremo, pero solo lo parece ya que el extremo que se tiene agarrado con la mano continúa estando agarrado. Lo que vemos es el movimiento ondulatorio producido por la vibración inicial que se le ha dado con la mano, similar al que produce la piedra al caer en el agua.

ANALISIS DE UNA ONDA
Una vez determinado el movimiento ondulatorio vamos a analizarlo en profundidad. Para empezar diremos que todo movimiento ondulatorio es simétrico y formado por dos mitades iguales, una en la parte superior y otra en la inferior. Justo en medio de estas dos mitades y a modo de división está la "linea cero", llamada así porque la energía ondulatoria es de valor nulo en los puntos en los que pasa por esta linea. Si nos fijamos en la ilustración de la onda producida en el agua por la piedra al caer, la linea cero sería el nivel que el agua tiene cuando está en reposo ya que en ese momento no existe ninguna energía que perturbe al líquido elemento y por lo tanto su valor es cero. A esta linea también suele llamársele "linea de tiempos" ya que en ella se representan los períodos de tiempo en que se produce la onda.

Fíjate en la linea vertical que hemos añadido a la izquierda de la onda en la ilustración de arriba. Se llama "linea de potenciales". En la parte de esta linea que se encuentra por encima de la linea cero se representan los valores máximos alcanzados por el potencial de la onda mientras que en la parte de abajo se representan los valores mínimos de dicho potencial. Si observas la linea de potenciales verás que en la parte superior se representan los valores positivos de la onda y en la parte inferior los valores negativos.

Al punto más elevado de una onda se le llama "pico" o "cresta" y al punto que alcanza el nivel mas bajo se le llama "seno". La "amplitud" de la onda es la altura que alcanza una cresta con relación a la linea cero. La amplitud de la onda va a depender de la energía que produce su formación.

En el caso de las ondas generadas en el agua su amplitud va disminuyendo progresivamente ya que va perdiendo energía debido a la resistencia que ofrece el agua a causa de su peso, hasta llegar a anularse del todo, momento en el cual el agua llegará a la calma total.

Se dice que se ha completado una onda cuando, partiendo de la linea cero, se ha recorrido una cresta y un seno y se llega de nuevo a la linea cero. Se habla entonces de una "onda completa". También estamos frente a una onda completa cuando partimos de una cresta y llegamos a otra cresta, o cuando partimos de un seno y llegamos a otro seno. El concepto es completamente equivalente y en los tres casos mencionados tendremos ante nosotros una onda completa. Aunque quizás no te lo parezca te aseguro que es así. Lo entenderás seguidamente con la explicación de otro concepto.

Un parámetro muy importante e intimamente relacionado con las señales de radio es el llamado "longitud de onda". Se trata de una de las características que más nos interesa conocer ya que nos permitirá ahondar en el conocimiento de las ondas electromagnéticas y gracias a ello estaremos en disposición de entender muchas de las expresiones que como radioaficionados oímos todos los dias pero que no alcanzamos a interpretar de forma correcta.

La definición es la siguiente: La longitud de onda es la distancia que existe entre dos puntos cero alternativos. La longitud de onda también puede medirse entre dos crestas o entre dos senos (cualquiera de las tres medidas dará el mismo resultado). Para que entiendas mejor el concepto mira las ilustraciones y observa como la longitud de onda es idéntica para cualquiera de las tres maneras posibles de medición mencionadas.

Algo que debes retener en tu mente debido a su transcendencia es el concepto de invariabilidad de la longitud de onda de un movimiento ondulatorio determinado. Lee atentamente lo que sigue:

"La longitud de onda de un movimiento ondulatorio determinado permanece constante e invariable a lo largo de todo el camino que recorra, aunque su amplitud puede variar"

Para entender el concepto volvamos a la piedra que cae al agua. Hemos dicho que la amplitud de la onda producida va disminuyendo según se desplaza hacia la orilla, sin embargo su longitud de onda permanecerá constante aunque se haya desplazado 50 metros. Dicho de otro modo; la longitud de la onda medida justo al lado de la piedra será la misma que la que midamos a 50 metros del punto donde cayó dicha piedra, aunque su amplitud se haya reducido 15 veces.

Hasta aquí este segundo artículo sobre las ondas. Hay muchas cosas más que escribir sobre ellas pero lo dejaremos para otro momento. Decirte que con lo estudiado ya estás preparado para entender muchas cosas que antes quizás te sonaban a chino o no llegabas a comprender en toda su extensión. Lo verás próximamente aquí en www.radioelectrónica.es, nuestro punto de encuentro.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +