Acceso



Registro de usuarios
Contáctenos
Teoría
Las ondas (IV)

En el artículo anterior vimos la relación que existe entre la frecuencia, la velocidad y la longitud de onda de un movimiento ondulatorio determinado. Es cierto que la velocidad de un movimiento ondulatorio la podemos determinar a partir de su longitud de onda y de su frecuencia, pero no es menos cierto que dicha velocidad no depende proporcionalmente de esos parámetros. Lo que intentamos expresar es que, dentro de un determinado tipo de ondas (por ejemplo las que engloban los sonidos audibles), su velocidad no aumenta cuando aumenta su frecuencia o su longitud de onda, sino que permanece mas o menos estable, y esto es fácil de entender porque al aumentar la frecuencia disminuye su longitud de onda y viceversa, y la velocidad -recordemos- es el resultado del producto de ambos factores (V = F · λ).

Sin embargo, sabemos que existen otra clase de ondas muchísimo más rápidas que los sonidos audibles. Se trata de ondas que tienen la facultad de viajar a la velocidad de la luz, unos 300.000 kilómetros por segundo. ¿Cual es la diferencia entre estos tipos de ondas para que la velocidad sea tan dispar entre ellas? ¿Como se hace para lograr el "milagro" de que una onda sonora, que solo viaja a poco mas de 340 metros por segundo, la podamos oir en todo el globo terraqueo prácticamente al mismo tiempo? Las respuestas las tienes a continuación.

Leer más...
Otros Temas Interesantes
Noticias
SMD Codes Databook 2014 edition

SMD Codes Databook 2014 edition

Libro electrónico de datos (Databook) de códigos SMD edición 2014 en formato electrónico de Eugeniu Turuta. Códigos SMD de componentes semiconductores activos.

Leer más...
Radioaficionados
Receptor de cristal (radio galena) para FM

Publicamos este artículo como respuesta a una solicitud de asesoramiento de Silvio, que nos visita desde Cali - Valle del Cauca (Colombia).

Silvio nos comenta las dificultades que está enlocontrando en la puesta en marcha de un "receptor de cristal" o "radio galena", cuyo circuito ha sido adaptado con la intención de recibir las señales de la banda de FM comercial (88-108 MHz). Dicho receptor lo ha construido en base a la información extraida de cierta página web.

Con este artículo queremos arrojar un poco de luz sobre como llevar a la práctica con éxito la construcción de este tipo de receptores de onda corta y VHF, con demodulación de FM incluida, en base a nuestra experiencia y a la información que tenemos de aquellos fabricantes que en su dia los comercializaron.

Aunque para muchos, el hecho de poder oir señales de frecuencia modulada (FM) usando un receptor de galena con detección a diodo de cristal es imposible, desde aquí queremos hacer ver que SI se puede y en este artículo vamos a explicar las razones que existen para ello.

Si deseas saber más clica en "Leer completo..." por favor.

Leer más...
Miscelanea
Tira a matar - Juego de reflejos

¿Con que rapidez responde tu cuerpo a los impulsos externos?. ¿Cuanto tiempo necesitarías para reaccionar ante un peligro inminente?. Si oyes un disparo cercano ¿tus reflejos te hacen "salirte del pellejo"?.

Para poner a prueba la rapidez de respuesta a tus estímulos nerviosos hemos ideado un pequeño circuito con el que podrás medirte en este aspecto con otra persona, y de paso cultivar la faceta "reflexológica" del ser humano. Se trata de algo así como un duelo, lógicamente sin pistolas y sin balas pero eso si, al ser del todo electrónico, con botones y con luces.

Una vez construido el dispositivo se dispondrán dos botones de mayor o menor tamaño, los cuales accionarán sendos pulsadores conectados a nuestro circuito. Al oir una señal, los dos participantes se apresurarán a pulsar su correspondiente botón.

El más rápido de los dos se llevará el gato al agua y ganará el juego. Su victoria quedará fehacientemente constatada porque la luz que le corresponde indicará ese hecho.

Comenzamos con esta reseña una nueva categoría de artículos a la que llamaremos "Miscelánea", en la que tendrán cabida una amplia variedad de temas con multitud de contenidos. Esperamos que esta novedad sea de tu agrado.

Leer más...
Práctica
La soldadura

"Teoría sin práctica es parálisis y práctica sin teoría es ceguera". Con la primera parte de esta frase, cuya autoría desconocemos, podemos resaltar la importancia de que cualquier cosa que estudiemos siempre vaya acompañada de ejercicios prácticos. De nada en absoluto nos sirve estudiar muy a fondo cualquier rama del saber si luego somos incapaces de poner en práctica lo aprendido. ¿Cuantos inventos han podido no ver la luz si su inventor no hubiera llevado a la práctica la idea, basada en su conocimiento teórico, que tuvo en un momento determinado?.

La segunda parte de la frase es tan cierta como la primera y, por desgracia, se da con bastante más frecuencia que su compañera en la vida real. Cuantas veces hemos contratado a un "profesional" para que nos haga un trabajo y al final, cuando ha terminado, vemos "la chapuza" que nos entrega. ¡Cuanta razón tenía Leonardo Da Vinci cuando expresó lo siguiente!: "Los que se enamoran de la práctica sin la teoría son como pilotos sin timón ni brújula que nunca podrán saber a donde van". Esto nos confirma que "práctica sin teoría es ceguera".

Pues bién, todo ello trasladado a la radio y la electrónica tiene una importancia decisiva. Por lo tanto, vamos a practicar un poco con algo esencial para construir nuestros circuitos de forma apropiada. ¿Que tal si aprendemos a soldar correctamente?. ¿Te gusta la idea?

Leer más...
Teoría
El generador - Medir la electricidad

Si recordamos el símil hidráulico que expusimos en artículos anteriores, rápidamente podemos deducir que en cuanto el nivel del agua del depósito "N" se iguale a la del depósito "P" dejará de haber una corriente a través del tubo que une los dos depósitos. Es decir, la corriente a través del tubo se mantendrá mientras se mantenga la "diferencia de nivel" entre el depósito "N" y el depósito "P", que representa lo que hemos quedado en llamar "d.d.p." en nuestro circuito eléctrico.

Para mantener esta diferencia de niveles de agua y hacer que la corriente continúe fluyendo a través del tubo debemos hacer algo. De lo contrario la corriente de fluido cesará. Habrá sido una corriente momentánea, algo similar a una descarga rápida entre dos cuerpos cargados eléctricamente. ¿Quieres saber como conseguirlo? Lee este artículo.

Leer más...
Noticias
Curso técnico de utilización del polímetro digital

Curso técnico de utilización del polímetro digital. Excelente y completo tutorial de uso del polímetro digital, con 210 páginas de información práctica sobre el uso de este instrumento.

Aprenderás a manejar tu polímetro digital como un verdadero profesional desde lo más básico. Contiene instrucciones para saber comprobar dispositivos y circuitos electrónicos, así como los conocimientos necesarios para la resolución de averias en equipos eléctricos.

Para más información clica en "Leer completo..."

Leer más...

Las ondas (II)

Cuando hemos hablado del movimiento ondulatorio producido por la piedra que cae en el estanque de aguas tranquilas no hemos ahondado demasiado en su mecánica ni en sus peculiaridades. El estudio de tales ondas puede darnos muchas ideas y proporcionarnos algunos conocimientos relacionados con el resto de ondas, incluidas las ondas electromagnéticas utilizadas en las transmisiones de radio. Para un observador poco experimentado, las ondas producidas por la piedra al caer no son mas que unas pocas circunferencias que se dibujan en el agua y que se alejan del punto en donde cayó el pedrusco, aumentando progresivamente de diámetro y disminuyendo de intensidad. Sin embargo, hay mucha más información implícita en esas circunferencias de la que se ve a simple vista, solo que debemos conocer la manera de extraerla para así poder asimilarla.

Una vez dicho esto surgen algunas preguntas relacionadas con lo expuesto hasta el momento. ¿Que métodos podemos utilizar para conocer estas ondas mas a fondo? ¿Que podemos aprender de ellas que aplique también a los demás tipos de ondas? ¿Cuales son sus características principales? Todas las respuestas vienen a continuación.

Vamos a suponer que nos hemos fabricado un lago especial, o mejor dicho, un depósito de agua especial con unas dimensiones muy grandes y paredes de cristal, algo así como una pecera inmensa. Ahora, y como un observador de lujo, vamos a repetir nuestro experimento de la piedra que cae al agua pero en esta ocasión situándo nuestros ojos al mismo nivel que el líquido elemento, de manera que vamos a poder ver exactamente qué pasa cuando la piedra cae en el agua. Lo entenderemos mucho mejor si repetimos el párrafo del artículo anterior que tiene que ver con lo que venimos diciendo y vemos una ilustración relativa a ello:

En el momento del choque de la piedra con el agua esta es obligada a desplazarse violentamente y se crea un vacío en la superficie del lago. Parte del agua que ocupaba esta cavidad asciende por encima del nivel que el lago tenía cuando estaba en reposo lo que hace que se forme una pared alrededor del punto donde ha caido la piedra, pared que supera en altura el nivel normal del agua del estanque. El agua que ha subido por encima del nivel de reposo del lago vuelve a caer y se coloca ahora por debajo del nivel de reposo, provocando con ello una nueva subida del agua circundante y una nueva pared, lo que significa otra nueva onda, que otra vez supera el nivel normal del agua. El proceso se repite mermando su intensidad progresivamente debido al peso del agua, y por lo tanto a la resistencia que esta opone para ser desplazada, llegando a anularse completamente la formación de estas ondas transversales.

Ahora si que podemos ver perfectamente la onda producida por la piedra al caer. Se trata de una onda de las de tipo "mecánico" que, como dijimos en el artículo anterior, necesitan de un medio para propagarse y en este caso dicho medio es el agua. Entendemos que la onda no es la circunferencia completa que vemos formarse en el lago sino una sección de dicha circunferencia. En el dibujo de la parte superior estamos viendo seccionadas un buen número de esas circunferencias y podemos apreciar la onda formada en todo su esplendor. Dicha onda aparece como una linea ondulada, practicamente con forma senoidal. Se trata del mismo movimiento ondulatorio que vimos en el video que comentamos en el artículo anterior el cual se produce usando como medio de transmisión un muelle lo suficientemente largo y elástico. En este video parece que el muelle se desplaza rápidamente en toda su longitud hacia la parte fija situada en el otro extremo, pero solo lo parece ya que el extremo que se tiene agarrado con la mano continúa estando agarrado. Lo que vemos es el movimiento ondulatorio producido por la vibración inicial que se le ha dado con la mano, similar al que produce la piedra al caer en el agua.

ANALISIS DE UNA ONDA
Una vez determinado el movimiento ondulatorio vamos a analizarlo en profundidad. Para empezar diremos que todo movimiento ondulatorio es simétrico y formado por dos mitades iguales, una en la parte superior y otra en la inferior. Justo en medio de estas dos mitades y a modo de división está la "linea cero", llamada así porque la energía ondulatoria es de valor nulo en los puntos en los que pasa por esta linea. Si nos fijamos en la ilustración de la onda producida en el agua por la piedra al caer, la linea cero sería el nivel que el agua tiene cuando está en reposo ya que en ese momento no existe ninguna energía que perturbe al líquido elemento y por lo tanto su valor es cero. A esta linea también suele llamársele "linea de tiempos" ya que en ella se representan los períodos de tiempo en que se produce la onda.

Fíjate en la linea vertical que hemos añadido a la izquierda de la onda en la ilustración de arriba. Se llama "linea de potenciales". En la parte de esta linea que se encuentra por encima de la linea cero se representan los valores máximos alcanzados por el potencial de la onda mientras que en la parte de abajo se representan los valores mínimos de dicho potencial. Si observas la linea de potenciales verás que en la parte superior se representan los valores positivos de la onda y en la parte inferior los valores negativos.

Al punto más elevado de una onda se le llama "pico" o "cresta" y al punto que alcanza el nivel mas bajo se le llama "seno". La "amplitud" de la onda es la altura que alcanza una cresta con relación a la linea cero. La amplitud de la onda va a depender de la energía que produce su formación.

En el caso de las ondas generadas en el agua su amplitud va disminuyendo progresivamente ya que va perdiendo energía debido a la resistencia que ofrece el agua a causa de su peso, hasta llegar a anularse del todo, momento en el cual el agua llegará a la calma total.

Se dice que se ha completado una onda cuando, partiendo de la linea cero, se ha recorrido una cresta y un seno y se llega de nuevo a la linea cero. Se habla entonces de una "onda completa". También estamos frente a una onda completa cuando partimos de una cresta y llegamos a otra cresta, o cuando partimos de un seno y llegamos a otro seno. El concepto es completamente equivalente y en los tres casos mencionados tendremos ante nosotros una onda completa. Aunque quizás no te lo parezca te aseguro que es así. Lo entenderás seguidamente con la explicación de otro concepto.

Un parámetro muy importante e intimamente relacionado con las señales de radio es el llamado "longitud de onda". Se trata de una de las características que más nos interesa conocer ya que nos permitirá ahondar en el conocimiento de las ondas electromagnéticas y gracias a ello estaremos en disposición de entender muchas de las expresiones que como radioaficionados oímos todos los dias pero que no alcanzamos a interpretar de forma correcta.

La definición es la siguiente: La longitud de onda es la distancia que existe entre dos puntos cero alternativos. La longitud de onda también puede medirse entre dos crestas o entre dos senos (cualquiera de las tres medidas dará el mismo resultado). Para que entiendas mejor el concepto mira las ilustraciones y observa como la longitud de onda es idéntica para cualquiera de las tres maneras posibles de medición mencionadas.

Algo que debes retener en tu mente debido a su transcendencia es el concepto de invariabilidad de la longitud de onda de un movimiento ondulatorio determinado. Lee atentamente lo que sigue:

"La longitud de onda de un movimiento ondulatorio determinado permanece constante e invariable a lo largo de todo el camino que recorra, aunque su amplitud puede variar"

Para entender el concepto volvamos a la piedra que cae al agua. Hemos dicho que la amplitud de la onda producida va disminuyendo según se desplaza hacia la orilla, sin embargo su longitud de onda permanecerá constante aunque se haya desplazado 50 metros. Dicho de otro modo; la longitud de la onda medida justo al lado de la piedra será la misma que la que midamos a 50 metros del punto donde cayó dicha piedra, aunque su amplitud se haya reducido 15 veces.

Hasta aquí este segundo artículo sobre las ondas. Hay muchas cosas más que escribir sobre ellas pero lo dejaremos para otro momento. Decirte que con lo estudiado ya estás preparado para entender muchas cosas que antes quizás te sonaban a chino o no llegabas a comprender en toda su extensión. Lo verás próximamente aquí en www.radioelectrónica.es, nuestro punto de encuentro.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.