Acceso



Registro de usuarios
Contáctenos
Teoría
Intensidad de corriente eléctrica

Llegó el momento de cuantificar. Hasta ahora nos hemos expresado en términos generales, en un sentido algo abstracto. No hemos hablado aún de cantidades concretas, no hemos definido, matemáticamente hablando, los conceptos que hemos expuesto. Ahora es el momento de comenzar a puntualizar dichos conceptos, de darles una identidad numérica. Hemos hablado de electrones, hemos dicho que se mueven empujados por la d.d.p. existente entre dos polos, que cuanto mayor es esta d.d.p. mayor es la fuerza que los empuja y por lo tanto mayor es la corriente eléctrica que producen.

Pero... ¿De cuantos electrones estamos hablando? ¿De diez electrones? ¿De mil electrones? ¿De diez mil electrones? ¿Que cantidad de ellos intervienen cuando se produce una corriente eléctrica? ¿Es constante este número a lo largo de un circuito eléctrico? Y como dato curioso (aunque además nos servirá para captar un concepto muy importante necesario para el estudio de la radio)... ¿A que velocidad se mueven? ¿Tienen preferencia por alguna parte del conductor por el que circulan? Todo esto lo puedes saber si lees este artículo.

Leer más...
Otros Temas Interesantes
Noticias
Gana una suscripción a Radioelectronica.es

¡CONCURSO FINALIZADO!
¡SOLUCIÓN AQUÍ!

¿Te gustaría disfrutar de una suscripción por 30 dias a Radioelectronica.es totalmente gratis?. Ahora tienes esa posibilidad al alcance de tu mano con solo contestarnos a una sencilla pregunta.

Podrás disfrutar de todas las ventajas que acompaña el ser suscriptor: Leer todos los artículos sin publicidad y descargarlos en PDF, descargar valiosa información técnica, acceder y descargar videos, ebooks con características especiales, etc...

Ponemos al alcance de todos nuestros visitantes 50 suscripciones a nuestra web, las cuales serán sorteadas entre aquellas personas que resuelvan y nos envien la solución correcta a un sencillo problema que estamos seguros que la gran mayoría de nuestros visitantes sabrán resolver.

No es difícil en absoluto, sobre todo si eres asiduo lector de la información que publicamos. Si quieres saber más sigue leyendo, por favor.

Leer más...
Radioaficionados
Previo para micrófonos electret

Hasta el momento no habíamos hablado de los micrófonos de condensador. Para muchos profesionales de la sonorización, el micrófono de condensador es el máximo exponente en cuanto a calidad se refiere por su gran fidelidad, respuesta prácticamente plana en todo el margen de audiofrecuencias y una relación señal ruido mas que envidiable entre otras características interesantes. No obstante, este tipo de micrófono no está exento de inconvenientes, entre los más importantes cabe destacar su elevado costo.

Sin embargo, para alegría de muchos, existe una variante de micrófono de condensador en el que se unen las buenas cualidades de su predecesor original con un más que asequible precio de mercado. Nos referimos al micrófono electret.

A pesar de que con el micrófono electret se elimina, entre otras, la barrera del precio, hemos de decir que dicho micrófono no puede usarse tal cual en cualquier circuito, ya que la señal que suministra es demasiado baja e incapaz de atacar correctamente al preamplificador existente en la mayoría de dispositivos de audio.

En este artículo vamos a ver algunos detalles sobre este tema y, además, vamos a publicar el esquema eléctrico de un preamplificador especial, muy fácil de llevar a la práctica por cierto, de manera que podamos usarlo en cualquier equipo con una entrada de B.F., incluyendo una emisora de radioaficionado. ¿Te parece buena la idea?. Síguenos.

Leer más...
Miscelanea
Tira a matar - Juego de reflejos

¿Con que rapidez responde tu cuerpo a los impulsos externos?. ¿Cuanto tiempo necesitarías para reaccionar ante un peligro inminente?. Si oyes un disparo cercano ¿tus reflejos te hacen "salirte del pellejo"?.

Para poner a prueba la rapidez de respuesta a tus estímulos nerviosos hemos ideado un pequeño circuito con el que podrás medirte en este aspecto con otra persona, y de paso cultivar la faceta "reflexológica" del ser humano. Se trata de algo así como un duelo, lógicamente sin pistolas y sin balas pero eso si, al ser del todo electrónico, con botones y con luces.

Una vez construido el dispositivo se dispondrán dos botones de mayor o menor tamaño, los cuales accionarán sendos pulsadores conectados a nuestro circuito. Al oir una señal, los dos participantes se apresurarán a pulsar su correspondiente botón.

El más rápido de los dos se llevará el gato al agua y ganará el juego. Su victoria quedará fehacientemente constatada porque la luz que le corresponde indicará ese hecho.

Comenzamos con esta reseña una nueva categoría de artículos a la que llamaremos "Miscelánea", en la que tendrán cabida una amplia variedad de temas con multitud de contenidos. Esperamos que esta novedad sea de tu agrado.

Leer más...
Práctica
Detector de polaridad

Uno de los mayores errores que se cometen al enchufar equipos electrónicos a baterías o a fuentes de alimentación de corriente continua es la inversión de polaridad. ¿Te ha ocurrido esto a ti alguna vez al instalar una emisora de radioaficionado en tu automóvil y conectarla a su circuito eléctrico?.

Cuando se da esta circunstancia uno se pregunta... "¿como me ha podido pasar a mi?. No es posible, estoy viviendo un mal sueño, una pesadilla. Yo siempre voy con muchísimo cuidado. Pronto despertaré...". Pero no. Por desgracia no se trata de un sueño sino de una situación real. Has cometido el error más frecuente cuando se manejan equipos electrónicos con alimentación continua exterior; la temida inversión de polaridad.

Para que esto no te vuelva a pasar vamos a enseñarte a construir un sencillo aparato con el que podrás detectar muy facilmente la polaridad de una tensión continua desde 2 hasta 230 voltios aproximadamente. También te indicará, caso de que no se trate de una tensión continua, si dicha tensión es alterna.

Mediante unos diodos LED bicolor este tester te marcará, sin ninguna posibilidad de error, cual es el polo positivo y cual el negativo de una determinada toma de corriente eléctrica o si por contra se trata de una tensión alterna. ¿Te interesa?. Sigue leyendo, por favor...

Leer más...
Teoría
Las válvulas de vacío V

He aquí el quinto artículo dedicado a las válvulas de vacío. En él vamos a ver un par de circuitos de receptores de radio básicos con triodos termoiónicos. Analizaremos algunos esquemas que, si bien no tuvieron repercusión práctica comercialmente hablando, si que fueron muy usados y disfrutados por los radioaficionados y estudiantes de electrónica de hace algunas décadas, los cuales experimentaban construyendo circuitos de este tipo.

Comenzaremos estudiando la circuitería y el funcionamiento de un simple receptor con detección por diodo de cristal y amplificación de B.F. por triodo, circuito que no vas a tener problema alguno en entender siempre que hayas leido los artículos anteriores en los que hablamos del receptor elemental. Este tipo de receptor ganaba en sensibilidad y selectividad con respecto al receptor con diodo de cristal que no incorporaba el triodo.

Posteriormente examinaremos un viejo conocido del radioaficionado experimentador, el llamado receptor con detección por placa el cual mejoraba alguna característica del anterior, aunque verdaderamente esta mejora no paliaba la falta de sensibilidad de la que ya adolecía el receptor con detección a diodo simple.

En el próximo artículo le tocará el turno a otros tipos de receptores más avanzados. Pero para poder entender el funcionamiento de estos, deberemos primero conocer como funcionan los primeros. ¿Te atreves a continuar?.

Leer más...
Noticias
Cádiz, tacita de plata.

Normalmente no suelo pisar la playa en verano a partir de las 10 de la mañana. Sinceramente... no me gustan nada las grandes masas de personas, ni los lugares excesivamente concurridos y populosos. Mas bien soy amante del sosiego, la tranquilidad y la calma.

Es por eso que algunos fines de semana veraniegos como el de hoy, a eso de las 07:00 horas toca el despertador y mi mujer y yo nos ponemos en marcha si ambos hemos decidido de común acuerdo visitar el litoral.

Es una costumbre que tenemos desde hace años, aunque quizás para algunos no sea algo del todo agradable madrugar de esta manera los domingos. Para nosotros si lo és. Es más, nos encanta sobremanera.

Además, en pleno agosto y en la provincia donde resido es la única forma de dar un paseo por la playa, y un baño si cabe y apetece, sin que prácticamente nadie te esté incordiando ni acorralando.

Pero hoy ha sido especial. Ha sido especial porque el mar y el viento estaban en calma.

Leer más...

Las ondas (IV)

En el artículo anterior vimos la relación que existe entre la frecuencia, la velocidad y la longitud de onda de un movimiento ondulatorio determinado. Es cierto que la velocidad de un movimiento ondulatorio la podemos determinar a partir de su longitud de onda y de su frecuencia, pero no es menos cierto que dicha velocidad no depende proporcionalmente de esos parámetros. Lo que intentamos expresar es que, dentro de un determinado tipo de ondas (por ejemplo las que engloban los sonidos audibles), su velocidad no aumenta cuando aumenta su frecuencia o su longitud de onda, sino que permanece mas o menos estable, y esto es fácil de entender porque al aumentar la frecuencia disminuye su longitud de onda y viceversa, y la velocidad -recordemos- es el resultado del producto de ambos factores (V = F · λ).

Sin embargo, sabemos que existen otra clase de ondas muchísimo más rápidas que los sonidos audibles. Se trata de ondas que tienen la facultad de viajar a la velocidad de la luz, unos 300.000 kilómetros por segundo. ¿Cual es la diferencia entre estos tipos de ondas para que la velocidad sea tan dispar entre ellas? ¿Como se hace para lograr el "milagro" de que una onda sonora, que solo viaja a poco mas de 340 metros por segundo, la podamos oir en todo el globo terraqueo prácticamente al mismo tiempo? Las respuestas las tienes a continuación.

Contestemos en primer lugar a la pregunta de ¿que es lo que hay tan distinto entre las ondas sonoras (343,5 metros por segundo) y por ejemplo las ondas luminosas (unos 300.000 Kms. por segundo) para que exista esa abismal diferencia en su velocidad? Pués sencillamente que las primeras son "ondas mecánicas" y las segundas "ondas electromagnéticas".

Podemos llegar a entender esto a la perfección si pensamos que una onda mecánica, por ejemplo el sonido, se basa en la vibración de partículas, corpúsculos físicos o moléculas y que por lo tanto están sometidos a rozamientos entre ellos. Ese rozamiento, como ocurre en cualquier proceso mecánico, es el responsable en gran manera de que se pierda la energía inicial de la onda, lo que en el caso del sonido significa que desaparezca rápidamente el movimiento ondulatorio provocado en un principio. Por esta razón las ondas sonoras, aunque se produzcan en las mejores condiciones posibles, tienen un alcance bastante limitado.

Las ondas mecánicas se transmiten, como ya hemos estudiado, por la vibración de las moléculas del medio en que se propagan. La existencia de ese medio (aire, agua, gas, etc...) es esencial para que la onda mecánica se propague, y sin él la onda jamás se propagará. Por este motivo los sonidos no se transmiten en el espacio exterior donde no existe nada, solo un vacío inmenso. Ahora podemos comprender que dependiendo del medio de propagación en que se transmitan, la velocidad de estas ondas es distinta. Por ejemplo, la velocidad del sonido en el agua (a una temperatura de 25º centígrados) es de unos 1.493 metros/seg., en el acero de 5.100 metros/seg. y en el aluminio de 6.400 metros/seg., como vemos lejos de los 343,5 metros/seg. de su velocidad en la atmósfera terrestre.

Las ondas electromagnéticas, por el contrario, no son ondas mecánicas. Podríamos decir que se trata de campos eléctricos y campos magnéticos enlazados y perpendiculares entre si (mira la siguiente ilustración). El campo eléctrico produce un campo magnético y a su vez el campo magnético produce de nuevo un campo eléctrico. No necesitan de ningún medio para propagarse como ocurre con las ondas mecánicas, por lo que viajan perfectamente a través del vacío absoluto. Además, al no estar sometidas a roces de ningún tipo, conservan su energía durante largos recorridos de cientos, miles e incluso millones de kilómetros. Así se explica que la luz y el calor del sol, dos tipos de energías ondulatorias electromagnéticas (ondas luminosas y ondas calóricas), lleguen hasta nosotros desde casi 150 millones de kilómetros con intensidades bastante elevadas. Incluso podemos ver como lucen las estrellas que están a años luz de la Tierra.

Por este motivo no debe extrañarnos que puedan llegar hasta nosotros las ondas de radio emitidas por antenas situadas a miles de kilómetros de nuestros receptores y, una vez procesadas, podamos oir la información que se ha plasmado en ellas. Las ondas de radio también son ondas electromagnéticas y por lo tanto tienen las mismas o muy parecidas propiedades que las anteriormente tratadas. Su velocidad también es de 300.000 kilómetros/seg. y su frecuencia puede oscilar entre algunas decenas de miles de hercios y miles de millones de ellos. A este tipo de ondas se les llama señales de alta frecuencia.

Me gustaría que retuvieras este concepto, por favor: generalizando y expresándonos en términos electrónicos, hablamos de ondas de alta frecuencia cuando nos referimos a las ondas electromagnéticas de radio y de ondas de baja frecuencia cuando nos referimos al sonido u ondas sonoras. No obstante, decir que también existe una clasificación dentro de las propias señales o tipos de ondas concretas. Por ejemplo, dentro de las señales de radio distinguimos las de alta frecuencia (HF), las de muy alta frecuencia (VHF), las de frecuencias ultra altas (UHF), etc... y también dentro de las de baja frecuencia distinguimos los infrasonidos (por debajo de los 20 hercios y utilizados por los elefantes), los sonidos audibles por el hombre (entre 20 y unos 20.000 hercios) y los ultrasonidos (por encima de los 20.000 hercios y utilizados por murciélagos y delfines).

Para conseguir transmitir sonidos utilizando las ondas de radio se ideó en principio un sistema mediante el cual la información de la onda sonora "viajara" de alguna manera, implícitamente, en la onda electromagnética de alta frecuencia, llamada PORTADORA, sin que esta última perdiera sus cualidades, algo así como "adjuntando" el sonido a la onda electromagnética o portadora. Pero... ¿Como colocar un sonido, que es como hemos visto una onda de tipo mecánico, en una onda electromagnética? Es como querer esculpir un rostro con gas... ¡¡del todo imposible!!. Por eso, lo que deberemos hacer primero es convertir los sonidos, formados por ondas mecánicas, en ondas o señales electricas para que así tengan la misma naturaleza que la onda electromagnética de radio de alta frecuencia, podamos adjuntarla a ella y pueda viajar con ella hasta donde llegue ésta última. Esto lo podemos conseguir sencillamente con un micrófono.

Llegados aquí ya disponemos de las dos señales necesarias: la llamada portadora de alta frecuencia (o portadora de radiofrecuencia), y la señal de baja frecuencia que hemos recogido del micrófono (el sonido una vez "convertido" en señal eléctrica). Ahora solo nos queda incorporar de alguna manera la señal de baja frecuencia a la portadora de radiofrecuencia. Existen varias maneras de hacerlo, pero la primera vez que se logró se hizo modulando la amplitud de la portadora con la señal de baja frecuencia. Fíjate bién en la portadora sin modular. Se trata de una onda de alta frecuencia y de amplitud constante. Aún no existe en ella ninguna información sonora.

Ahora fíjate en la señal de baja frecuencia que hemos obtenido del micrófono. Observa que se trata de una onda de una frecuencia bastante menor que la anterior. Es una señal eléctrica que oiríamos perfectamente si la aplicáramos a unos altavoces o a unos auriculares. Esa es la señal que debemos incorporar a la portadora de radiofrecuencia modulando su amplitud.

Si ahora, cual escultor y a través de los medios adecuados que ya explicaremos, modificamos la amplitud de la portadora de radiofrecuencia siguiendo los niveles de la señal de baja frecuencia que hemos obtenido del micrófono, obtendremos la señal que representamos a continuación. Se trata de la misma portadora anterior pero modulada en amplitud (AM) con los sonidos que hemos producido delante de nuestro micrófono. Observa que tenemos "repetida" la modulación producida por la señal de baja frecuencia: una en los semiciclos positivos de la portadora y otra en los negativos.

Lo verás mas claro si resaltamos la forma de la onda de baja frecuencia en la parte superior (semiciclos positivos) de la portadora de radiofrecuencia. De hecho, cuando queramos recuperar en el receptor de radio el sonido que de forma primitiva producimos delante del micro, solo aprovecharemos una mitad de la portadora, bien la superior (semiciclos positivos) o la inferior (semiciclos negativos). En el presente ejemplo cogeríamos la parte superior de la portadora para "extraerle" la información que "cabalga" sobre ella y desecharíamos la parte inferior, aunque cualquiera de las dos serviría para nuestro propósito.

Ya solo nos queda eliminar la radiofrecuencia restante y usar la baja frecuencia obtenida de la demodulación de acuerdo a nuestros propósitos. Mas adelante explicaremos el proceso completo de la recepción de señales de radio y por supuesto incluiremos la demodulación con todos sus detalles. Por ahora lo dejamos aquí. Esperamos verte pronto de nuevo en www.radioelectronica.es, tu punto de encuentro.

 
C O M E N T A R I O S   
RE: Las ondas (IV)

#1 Apolonio Arturo Zule » 03-10-2016 01:24

Es muy interesante y enriquece nuestra vida mental el conocimiento que ustedes entregan en forma totalmente desinteresada, se les agradece infinitamente.

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +