Acceso



Registro de usuarios
Otros Temas Interesantes
Contáctenos
Teoría
El puente de Wien (II)

Segundo y definitivo artículo sobre este particular circuito electrónico.

Una vez que hemos analizado a fondo el puente de Wheatstone en el post anterior, el siguiente paso es abordar de lleno el funcionamiento y los detalles del puente que le ha dado nombre a estos artículos, es decir, el puente de Wien.

Si aún no has leido el primero te aconsejamos que lo hagas antes de abordar este, ya que en aquel se dan las pautas y se sientan las bases necesarias para llegar a entender el funcionamiento de este circuito.

Allí vimos como conseguir equilibrar el puente eligiendo apropiadamente el valor de las resistencias que lo forman, usando una fuente de corriente continua. También pudimos comprobar que el puente de Wheatstone puede funcionar y equilibrarse además con una fuente de corriente alterna.

Partiendo de este último detalle, vamos a continuar ahora estudiando como es posible llevar al equilibrio a este nuevo puente, el puente de Wien. Pasa dentro, por favor.

Leer más...
Noticias
El diodo es muy fácil... si te lo explican así

Presentamos un video en el que exponemos la teoría del diodo semiconductor.

Como siempre, hemos procurado usar un lenguaje claro y sencillo, asequible para cualquier persona con un mínimo nivel de conocimientos.

Clica en leer completo y disfrútalo.

Leer más...
Radioaficionados
Sencillo receptor para Onda Corta (O.C.)

Es un verdadero placer comprobar como varios de los artículos más visitados del blog son los relativos a la construcción de receptores de radio.

Nuestra web cuenta con información para elaborar distintos tipos de receptores, todos ellos muy sencillos de llevar a cabo y en esto no pensamos cambiar por ahora.

Desde el tradicional "receptor de cristal" o "radio galena" hasta el "receptor a reacción", pasando por el "receptor reflex", todos ellos podéis encontrarlos aquí en el blog de Radioelectronica.es, en sus versiones "modernas" con transistores.

Hoy os proponemos algo que, sin ser muy distinto, si que es poco conocido. Se trata de un receptor de cristal que podríamos calificar como "amplificado", con una sensibilidad fuera de lo normal para estos dispositivos, pero además con escucha en altavoz y para las bandas de Onda Corta (OC). Descúbrelo clicando en "Leer completo...".

Leer más...
Miscelanea
Sencillo VU-Meter a diodos LED

Lejos quedan aquellos tiempos en los que todos los medidores, y al decir todos me refiero a TODOS, estaban construidos mediante un galvanómetro y la lectura se realizaba con una aguja que parecía deslizarse al recorrer una escala graduada.

A decir verdad, para aquellos que en cierta manera somos de "la vieja escuela", los referidos medidores, midieran lo que midieran, tenían un encanto muy especial y podría decirse que sentimos "morriña" cuando los recordamos, como diría un gallego al estar lejos de su tierra y escuchar el sonido de una gaita.

Pero llegaron los diodos LED y se hizo la luz. Desde entonces, son muchos y muy variados los VU-Meters, vúmetros o medidores de unidades "VU" (del inglés Volume Unit) que se han desarrollado incorporando este componente electrónico, sobre todo usando la tecnología de la integración.

Pero en este artículo no vamos a publicar la información técnica para construir uno de estos instrumentos con los clásicos circuitos integrados UAA170 o UAA180 ni con cualquier otro. Tampoco vamos a enseñarte a conectar esas "barritas" LED con diferentes diseños. ¡Con ellas practicamente lo tienes todo hecho!.

En este artículo vamos a enseñarte como construir un VU-Meter LED con componentes discretos. ¡Dale ya al "Leer completo..." para saber más!.

Leer más...
Práctica
Monitor para fusible mejorado

En un artículo anterior de nuestro blog ya abordamos un montaje titulado "Indicador de fusible fundido" mediante el cual tuvimos la oportunidad de estudiar el multivibrador astable.

Posteriormente publicamos otro artículo titulado "Monitor para fusible", en el que presentábamos un circuito mucho más simple que el primero, que iluminaba un led cuando el fusible fundía.

Sin ánimo de ser insistente, os queremos presentar ahora este otro monitor algo más sofisticado que el segundo y menos complicado que el primero, mediante el cual podemos saber de un vistazo si nuestro aparato electrónico está recibiendo la alimentación adecuada, o por contra, está interrumpida por culpa de un fusible defectuoso.

En esta ocasión usaremos un doble diodo LED con cátodos comunes. El encendido del LED de color verde (¡PERFECTO!) nos indicará el funcionamiento correcto del dispositivo, mientras que si el LED que luce es el de color rojo (¡ALARMA!) querrá decir que el fusible está interrumpido.

Debido a la extremada sencillez del circuito creemos que merece la pena integrarlo en alguno de nuestros montajes, según consideremos o no la necesidad o conveniencia de que incorpore la mencionada indicación.

Clica en "Leer completo..." para ver más detalles.

Leer más...
Teoría
Diseño fácil de un amplificador transistorizado EC

¿A que aficionado a la electrónica no le atrae el diseño de circuitos?. Yo creo que son pocos los que escapan de esto.

Después de un largo periodo sin publicar artículos sobre teoría, aquí tienes uno que estoy seguro te va a encantar. Te explico como diseñar etapas amplificadoras con transistores en configuración de emisor común.

No te preocupes, que no te harán falta muchas matemáticas. Para llevar a cabo este pequeño proyecto solo necesitarás algunos conocimientos básicos sobre circuitos y saber sumar, restar, multiplicar y dividir.

Además, por si después de leer el artículo te quedan dudas, te hemos dejado un video en el que verás un ejemplo completo de como realizar el diseño desde cero.

El video incluye una simulación con Multisim, en la que podremos comprobar si lo que hemos hecho funciona o no funciona.

No te puedes perder la lectura de este artículo y la posterior visualización del video. Ya estás tardando en clicar en "Leer completo...".

Leer más...
Noticias
Construcción fácil de mini receptores de radio

Pequeño manual en el que se enseña a construir 30 sencillos receptores de radio basados en el radio galena.

Muy interesante para los que tienen en proyecto la construcción de uno de estos dispositivos, ya que ofrece la posibilidad de elegir entre un gran número de modelos diferentes. Autor Juan Garriga. Ediciones Cedel.

Leer más...

Intensidad de corriente eléctrica

Llegó el momento de cuantificar. Hasta ahora nos hemos expresado en términos generales, en un sentido algo abstracto. No hemos hablado aún de cantidades concretas, no hemos definido, matemáticamente hablando, los conceptos que hemos expuesto. Ahora es el momento de comenzar a puntualizar dichos conceptos, de darles una identidad numérica. Hemos hablado de electrones, hemos dicho que se mueven empujados por la d.d.p. existente entre dos polos, que cuanto mayor es esta d.d.p. mayor es la fuerza que los empuja y por lo tanto mayor es la corriente eléctrica que producen.

Pero... ¿De cuantos electrones estamos hablando? ¿De diez electrones? ¿De mil electrones? ¿De diez mil electrones? ¿Que cantidad de ellos intervienen cuando se produce una corriente eléctrica? ¿Es constante este número a lo largo de un circuito eléctrico? Y como dato curioso (aunque además nos servirá para captar un concepto muy importante necesario para el estudio de la radio)... ¿A que velocidad se mueven? ¿Tienen preferencia por alguna parte del conductor por el que circulan? Todo esto lo puedes saber si lees este artículo.

Como hemos repetido ya en bastantes ocasiones, la corriente eléctrica es algo que se mueve. Después de todo, volvemos a repetir, son electrones en movimiento. En matemáticas, todo lo que tiene movimiento está íntimamente relacionado con un factor importantísimo que es imprescindible conocer: el factor tiempo.

Por otra parte hemos utilizado un símil hidráulico para comparar la corriente eléctrica con una corriente de agua. La pregunta es... Si son dos cosas tan semejantes ¿Por qué no continuar con nuestro símil hidráulico para aprender a medir una corriente eléctrica como si fuera una corriente de agua? Vamos a intentarlo, pues posiblemente el resultado sea satisfactorio.

Ajustándonos a nuestro símil podemos comparar el concepto de "intensidad de corriente eléctrica" a lo que conocemos como "caudal de agua" de una fuente de la que mana el líquido elemento. ¿Que entendemos por caudal de una fuente de agua? Sencillamente los litros que salen de ella por cada unidad de tiempo, por ejemplo "tantos litros por minuto" o "tantos litros por segundo" si el caudal es muy abundante. Preste atención a esto porque los dos parámetros que se utilizan en la medición de un caudal de agua son válidos también para medir una corriente eléctrica. Nos referimos a la cantidad (los litros de agua) y al tiempo.

Trasladando esto a un circuito eléctrico no hablamos entonces de caudal, sino de intensidad de corriente. Una vez que tenemos la idea clara en nuestro cerebro podemos sin problemas expresar el concepto de INTENSIDAD DE CORRIENTE ELÉCTRICA:

"ES LA CANTIDAD DE CARGA ELÉCTRICA QUE CIRCULA POR UNA SECCIÓN DETERMINADA DE UN CONDUCTOR EN CADA UNIDAD DE TIEMPO"

Cuando hablamos de "carga eléctrica" podríamos decir que nos referimos a "una cantidad de electricidad", o incluso a "una cantidad de electrones libres". Es decir, que la definición anterior podríamos expresarla como "la cantidad de electrones libres que circula por una sección...bla, bla, bla". ¿Captas la idea?. Pues bién, en realidad es asi pero utilizando una medida adecuada. Me explico: ¿Quién es el guapo que se pondría a medir un caudal contando las moléculas de agua que salen por minuto de un grifo? ¡¡Estaría loco!!... ¿No es cierto?. La molécula es algo tan pequeño que, aunque se pudieran contar de una en una, tendríamos que manejar números elevadísimos, quizás billones o trillones o más. Lo mismo pasa con la intensidad de corriente eléctrica; ¡¡sería una locura intentar contarla por electrones!!. El electrón es tan pequeño que la descarga producida con una simple chispa apenas imperceptible contendría muchos millones de ellos. Tenemos que buscar pues una unidad acorde a esta circunstancia.

La unidad de carga eléctrica más utilizada es el CULOMBIO, bautizado así en honor al hombre que enunció la ley de atracción y repulsión de cargas eléctricas estudiada en un artículo anterior, Charles de Coulomb. Estamos seguros de que en este preciso momento te ha surgido una pregunta... ¿Cuantos electrones libres componen un Culombio? Es lógico plantear esta cuestión pues, según lo que llevamos estudiado, el Culombio es una cantidad de electricidad y por lo tanto debemos de estar hablando de una determinada cantidad de electrones libres, de la misma manera que un litro de agua debe contener una cantidad determinada de moléculas de agua. Pues bién, la carga eléctrica de un Culombio contiene mas de 6 trillones de electrones libres. ¿Te haces una idea de lo que significa esta cantidad?. ¿Que no te parece tan elevada?.

Verdaderamente es una cantidad extremadamente alta, pero creemos que, a pesar de su magnitud, aunque la escribamos con todas sus cifras no serás capaz de captarla. De todas formas vamos a escribirla. Allá vá:

1 Culombio = 6.241.506.000.000.000.000 de electrones libres aprox.

¿Te haces cargo? ¿Sigue sin parecerte tan elevada aún? Bueno, la verdad es que estas son cantidades que no las podemos imaginar a no ser que las ilustremos con algo. ¿Conoces la leyenda del tablero de ajedrez y los granos de trigo?

Aquél joven brahmán le pidió al monarca indio, cuando este último prometió darle cualquier cosa que quisiera el primero, un grano de trigo por la primera casilla del tablero de ajedrez, dos por la segunda, cuatro por la tercera, ocho por la cuarta... y así sucesivamente, doblando la cantidad de granos de trigo hasta llegar a la casilla numero 64 del tablero. El monarca comenzó a reir a carcajadas. Sin embargo, el rey no sabía lo que se le venía encima. La cantidad que salió una vez hechos los oportunos cálculos era mayor de 18 trillones de granos de trigo, algo así como tres veces los electrones que contiene un Culombio. Vamos ahora a ilustrar la magnitud de esta cantidad mediante compararla con algo que conocemos.

Primera comparación: Suponiendo que la Tierra entera fuera sembrada de Norte a Sur, incluyendo oceanos y mares, y que cada año obtuvieramos la cosecha al completo sin ningún tipo de pérdida, tardaríamos 450 siglos (45.000 años) en obtener esa cantidad de granos de trigo.

Segunda comparación: Si pudiéramos contar esa cantidad de granos de trigo a razón de 5 granos por segundo, trabajando dia y noche sin parar siquiera a comer o a dormir, tardaríamos 1.170 millones de siglos en acabar nuestra tarea (después seguro que tendríamos que afeitarnos).

Tercera comparación: Esa cantidad de granos de trigo cubrirían el globo terráqueo, incluyendo la tierra y toda su agua, con una altura de cinco metros... ¡Y eso a pesar de lo pequeño que es un simple grano de trigo!.

Ya que estamos contando algunas curiosidades, y antes de continuar con el estudio de la electricidad propiamente dicho, nos gustaría comentarte algunas cosas que tienen que ver con la corriente eléctrica y especialmente con los portadores de carga, los electrones. Te vamos a hacer una pregunta y queremos que intentes contestarla: ¿A que velocidad viajan los electrones por el interior del conductor eléctrico? ¿Se mueven a la velocidad de la luz, o sea a 300.000 Km/s? En principio parece que solo así se explica que las lineas de conducción de energía eléctrica de cientos de kilómetros de longitud puedan, de forma casi instantanea, transportar esta energía de un punto a otro.

¡Bueno!, pues quizás vamos a sorprenderte con nuestra próxima declaración pero, comparativamente hablando... "LOS ELECTRONES CASI NO SE MUEVEN". ¿Como? ¿Que qué estamos diciendo? ¿Como es posible que los electrones "casi ni se muevan" si hemos repetido hasta la saciedad que precisamente ese movimiento de electrones ES la corriente eléctrica? ¿Que te estamos volviendo loco? Perdona, pero te lo vamos a volver a repetir porque es una verdad como un templo... "COMPARATIVAMENTE, LOS ELECTRONES CASI NI SE MUEVEN", y ahora viene la explicación.

Observa que hemos añadido el adjetivo "comparativamente". Pero... ¿comparado con qué?. Pues comparándola con la velocidad de la luz (300.000 Km/s). Vamos a escribir nuestra afirmación con datos numéricos. ¡Atento!...:

"LA VELOCIDAD DE DESPLAZAMIENTO DE LOS ELECTRONES EN UN CONDUCTOR ELÉCTRICO DEPENDE DE LA DENSIDAD DE LA CORRIENTE ELÉCTRICA A SU TRAVÉS, Y PARA LAS INSTALACIONES ELÉCTRICAS Y/O ELECTRÓNICAS HABITUALES ES DE APROXIMADAMENTE 0,07 CENTÍMETROS POR SEGUNDO, O LO QUE ES LO MISMO 0,7 MILÍMETROS POR SEGUNDO"

Dicho de otra manera, un electrón tarda en recorrer un metro de cable unos 24 minutos, es decir... ¡¡¡CASI MEDIA HORA!!!. Efectivamente, si resolvemos la regla de tres, tenemos que en circunstancias normales un electrón viaja a una velocidad de 2,52 metros por hora a través de un conductor. Después de decir esto se impone la siguiente pregunta... ¿Como es posible entonces, que las centrales eléctricas envien la electricidad de forma casi instantanea a las subestaciones situadas a cientos de kilómetros?.

La respuesta es que lo que se transmite de forma casi instantanea a lo largo de toda la linea es la diferencia de potencial (d.d.p., tensión o voltaje, como quieras llamarlo). Desde el momento en que en la central eléctrica conectan la linea, esa d.d.p. la recorre casi instantaneamente sin que los electrones se muevan ni una sola millonésima de micra. Una vez que conectamos algo en el otro extremo de la linea TODOS LOS ELECTRONES COMIENZAN A MOVERSE CASI AL UNÍSONO A LO LARGO DE LA LINEA ENTERA CON LA VELOCIDAD MENCIONADA ANTES DE 0,7 MILÍMETROS POR SEGUNDO.

Dicho de manera coloquial, aunque su velocidad de desplazamiento sea considerablemente lenta pero TODOS LOS ELECTRONES DE UN MISMO CIRCUITO SE MUEVEN PRÁCTICAMENTE AL MISMO TIEMPO de manera que suponiendo un conductor eléctrico de 100 kilómetros de longitud, cuando por el extremo del conductor conectado a la central eléctrica "entra" un electrón, casi en ese mismo instante y cién kilómetros mas allá, "sale" otro electrón por el extremo opuesto de forma que el conductor eléctrico SIEMPRE TIENE EL MISMO NUMERO DE ELECTRONES LIBRES DENTRO DE EL. Se puede decir que LA VELOCIDAD CON QUE REACCIONAN TODOS LOS ELECTRONES LIBRES DEL CIRCUITO "EN CONJUNTO" SI QUE SE ACERCA A LA VELOCIDAD DE LA LUZ, SIN EMBARGO VISTOS UNO POR UNO LOS ELECTRONES CASI NO SE MUEVEN. ¡Curioso!...¿No?.

Otro detalle, aunque sea adelantarnos al estudio, es que cuando tratamos con corrientes alternas de alta frecuencia (no te preocupes, ya veremos que significa esto mas adelante) los electrones "prefieren" circular por la periferia de los conductores, es decir, por la parte mas "exterior", dejando el centro del conductor prácticamente sin electrones libres. Este efecto se llama "efecto pelicular" o "efecto Kelvin" y lo podemos ver representado en el dibujo. Hasta aquí el artículo dedicado a la intensidad de corriente eléctrica. En nuestro próximo artículo hablaremos de la unidad utilizada para medir la intensidad de corriente eléctrica, el AMPERIO. Te esperamos.

 
C O M E N T A R I O S   
Gracias

#3 Viviana » 01-04-2020 17:06

EXCELENTE. Quiero felicitar al autor y editores de la nota. Es casi imposible encontrar un texto tan claro y bien redactado como éste.
Muy agradecida y en cuanto me sea posible aportaré mi granito de arena colaborando con esta página.
En mi opinión deberían editar un libro de Física o Ciencias Naturales para el Secundario, que se vendería rápidamente.
Saludos y GRACIAS.

RE: Intensidad de corriente eléctrica

#2 deumarys » 03-03-2013 00:09

todo esta super tienen muy buen cotenido... me gusto mucho
gracias x la info sigan asi :-)

RE: Intensidad de corriente eléctrica

#1 juan carlos » 25-09-2012 20:16

muy bueno me ha encantado

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +