Intensidad de corriente eléctrica

Artículos teóricos

Llegó el momento de cuantificar. Hasta ahora nos hemos expresado en términos generales, en un sentido algo abstracto. No hemos hablado aún de cantidades concretas, no hemos definido, matemáticamente hablando, los conceptos que hemos expuesto. Ahora es el momento de comenzar a puntualizar dichos conceptos, de darles una identidad numérica. Hemos hablado de electrones, hemos dicho que se mueven empujados por la d.d.p. existente entre dos polos, que cuanto mayor es esta d.d.p. mayor es la fuerza que los empuja y por lo tanto mayor es la corriente eléctrica que producen.

Pero... ¿De cuantos electrones estamos hablando? ¿De diez electrones? ¿De mil electrones? ¿De diez mil electrones? ¿Que cantidad de ellos intervienen cuando se produce una corriente eléctrica? ¿Es constante este número a lo largo de un circuito eléctrico? Y como dato curioso (aunque además nos servirá para captar un concepto muy importante necesario para el estudio de la radio)... ¿A que velocidad se mueven? ¿Tienen preferencia por alguna parte del conductor por el que circulan? Todo esto lo puedes saber si lees este artículo.

Como hemos repetido ya en bastantes ocasiones, la corriente eléctrica es algo que se mueve. Después de todo, volvemos a repetir, son electrones en movimiento. En matemáticas, todo lo que tiene movimiento está íntimamente relacionado con un factor importantísimo que es imprescindible conocer: el factor tiempo.

Por otra parte hemos utilizado un símil hidráulico para comparar la corriente eléctrica con una corriente de agua. La pregunta es... Si son dos cosas tan semejantes ¿Por qué no continuar con nuestro símil hidráulico para aprender a medir una corriente eléctrica como si fuera una corriente de agua? Vamos a intentarlo, pués posiblemente el resultado sea satisfactorio.

Ajustándonos a nuestro símil podemos comparar el concepto de "intensidad de corriente eléctrica" a lo que conocemos como "caudal de agua" de una fuente de la que mana el líquido elemento. ¿Que entendemos por caudal de una fuente de agua? Sencillamente los litros que salen de ella por cada unidad de tiempo, por ejemplo "tantos litros por minuto" o "tantos litros por segundo" si el caudal es muy abundante. Preste atención a esto porque los dos parámetros que se utilizan en la medición de un caudal de agua son válidos también para medir una corriente eléctrica. Nos referimos a la cantidad (los litros de agua) y al tiempo.

Banner

Trasladando esto a un circuito eléctrico no hablamos entonces de caudal, sino de intensidad de corriente. Una vez que tenemos la idea clara en nuestro cerebro podemos sin problemas expresar el concepto de INTENSIDAD DE CORRIENTE ELÉCTRICA:

"ES LA CANTIDAD DE CARGA ELÉCTRICA QUE CIRCULA POR UNA SECCIÓN DETERMINADA DE UN CONDUCTOR EN CADA UNIDAD DE TIEMPO"

Cuando hablamos de "carga eléctrica" podríamos decir que nos referimos a "una cantidad de electricidad", o incluso a "una cantidad de electrones libres". Es decir, que la definición anterior podríamos expresarla como "la cantidad de electrones libres que circula por una sección...bla, bla, bla". ¿Captas la idea?. Pués bién, en realidad es asi pero utilizando una medida adecuada. Me explico: ¿Quién es el guapo que se pondría a medir un caudal contando las moléculas de agua que salen por minuto de un grifo? ¡¡Estaría loco!!... ¿No es cierto?. La molécula es algo tan pequeño que, aunque se pudieran contar de una en una, tendríamos que manejar números elevadísimos, quizás billones o trillones o más. Lo mismo pasa con la intensidad de corriente eléctrica; ¡¡sería una locura intentar contarla por electrones!!. El electrón es tan pequeño que la descarga producida con una simple chispa apenas imperceptible contendría muchos millones de ellos. Tenemos que buscar pués una unidad acorde a esta circunstancia.

La unidad de carga eléctrica más utilizada es el CULOMBIO, bautizado así en honor al hombre que enunció la ley de atracción y repulsión de cargas eléctricas estudiada en un artículo anterior, Charles de Coulomb. Estamos seguros de que en este preciso momento te ha surgido una pregunta... ¿Cuantos electrones libres componen un Culombio? Es lógico plantear esta cuestión pués, según lo que llevamos estudiado, el Culombio es una cantidad de electricidad y por lo tanto debemos de estar hablando de una determinada cantidad de electrones libres, de la misma manera que un litro de agua debe contener una cantidad determinada de moléculas de agua. Pués bién, la carga eléctrica de un Culombio contiene mas de 6 trillones de electrones libres. ¿Te haces una idea de lo que significa esta cantidad?. ¿Que no te parece tan elevada?.

Verdaderamente es una cantidad extremadamente alta, pero creemos que, a pesar de su magnitud, aunque la escribamos con todas sus cifras no serás capaz de captarla. De todas formas vamos a escribirla. Allá vá:

1 Culombio = 6.241.506.000.000.000.000 de electrones libres aprox.

¿Te haces cargo? ¿Sigue sin parecerte tan elevada aún? Bueno, la verdad es que estas son cantidades que no las podemos imaginar a no ser que las ilustremos con algo. ¿Conoces la leyenda del tablero de ajedrez y los granos de trigo?

Aquél joven brahmán le pidió al monarca indio, cuando este último prometió darle cualquier cosa que quisiera el primero, un grano de trigo por la primera casilla del tablero de ajedrez, dos por la segunda, cuatro por la tercera, ocho por la cuarta... y así sucesivamente, doblando la cantidad de granos de trigo hasta llegar a la casilla numero 64 del tablero. El monarca comenzó a reir a carcajadas. Sin embargo, el rey no sabía lo que se le venía encima. La cantidad que salió una vez hechos los oportunos cálculos era mayor de 18 trillones de granos de trigo, algo así como tres veces los electrones que contiene un Culombio. Vamos ahora a ilustrar la magnitud de esta cantidad mediante compararla con algo que conocemos.

Primera comparación: Suponiendo que la Tierra entera fuera sembrada de Norte a Sur, incluyendo oceanos y mares, y que cada año obtuvieramos la cosecha al completo sin ningún tipo de pérdida, tardaríamos 450 siglos (45.000 años) en obtener esa cantidad de granos de trigo.

Banner

Segunda comparación: Si pudiéramos contar esa cantidad de granos de trigo a razón de 5 granos por segundo, trabajando dia y noche sin parar siquiera a comer o a dormir, tardaríamos 1.170 millones de siglos en acabar nuestra tarea (después seguro que tendríamos que afeitarnos).

Tercera comparación: Esa cantidad de granos de trigo cubrirían el globo terráqueo, incluyendo la tierra y toda su agua, con una altura de cinco metros... ¡Y eso a pesar de lo pequeño que es un simple grano de trigo!.

Ya que estamos contando algunas curiosidades, y antes de continuar con el estudio de la electricidad propiamente dicho, nos gustaría comentarte algunas cosas que tienen que ver con la corriente eléctrica y especialmente con los portadores de carga, los electrones. Te vamos a hacer una pregunta y queremos que intentes contestarla: ¿A que velocidad viajan los electrones por el interior del conductor eléctrico? ¿Se mueven a la velocidad de la luz, o sea a 300.000 Km/s? En principio parece que solo así se explica que las lineas de conducción de energía eléctrica de cientos de kilómetros de longitud puedan, de forma casi instantanea, transportar esta energía de un punto a otro.

Banner

¡Bueno!, pués quizás vamos a sorprenderte con nuestra próxima declaración pero, comparativamente hablando... "LOS ELECTRONES CASI NO SE MUEVEN". ¿Como? ¿Que qué estamos diciendo? ¿Como es posible que los electrones "casi ni se muevan" si hemos repetido hasta la saciedad que precisamente ese movimiento de electrones ES la corriente eléctrica? ¿Que te estamos volviendo loco? Perdona, pero te lo vamos a volver a repetir porque es una verdad como un templo... "COMPARATIVAMENTE, LOS ELECTRONES CASI NI SE MUEVEN", y ahora viene la explicación.

Observa que hemos añadido el adjetivo "comparativamente". Pero... ¿comparado con qué?. Pués comparándola con la velocidad de la luz (300.000 Km/s). Vamos a escribir nuestra afirmación con datos numéricos. ¡Atento!...:

"LA VELOCIDAD DE DESPLAZAMIENTO DE LOS ELECTRONES EN UN CONDUCTOR ELÉCTRICO DEPENDE DE LA DENSIDAD DE LA CORRIENTE ELÉCTRICA A SU TRAVÉS, Y PARA LAS INSTALACIONES ELÉCTRICAS Y/O ELECTRÓNICAS HABITUALES ES DE APROXIMADAMENTE 0,07 CENTÍMETROS POR SEGUNDO, O LO QUE ES LO MISMO 0,7 MILÍMETROS POR SEGUNDO"

Dicho de otra manera, un electrón tarda en recorrer un metro de cable unos 24 minutos, es decir... ¡¡¡CASI MEDIA HORA!!!. Efectivamente, si resolvemos la regla de tres, tenemos que en circunstancias normales un electrón viaja a una velocidad de 2,52 metros por hora a través de un conductor. Después de decir esto se impone la siguiente pregunta... ¿Como es posible entonces, que las centrales eléctricas envien la electricidad de forma casi instantanea a las subestaciones situadas a cientos de kilómetros?.

La respuesta es que lo que se transmite de forma casi instantanea a lo largo de toda la linea es la diferencia de potencial (d.d.p., tensión o voltaje, como quieras llamarlo). Desde el momento en que en la central eléctrica conectan la linea, esa d.d.p. la recorre casi instantaneamente sin que los electrones se muevan ni una sola millonésima de micra. Una vez que conectamos algo en el otro extremo de la linea TODOS LOS ELECTRONES COMIENZAN A MOVERSE CASI AL UNÍSONO A LO LARGO DE LA LINEA ENTERA CON LA VELOCIDAD MENCIONADA ANTES DE 0,7 MILÍMETROS POR SEGUNDO.

Dicho de manera coloquial, aunque su velocidad de desplazamiento sea considerablemente lenta pero TODOS LOS ELECTRONES DE UN MISMO CIRCUITO SE MUEVEN PRÁCTICAMENTE AL MISMO TIEMPO de manera que suponiendo un conductor eléctrico de 100 kilómetros de longitud, cuando por el extremo del conductor conectado a la central eléctrica "entra" un electrón, casi en ese mismo instante y cién kilómetros mas allá, "sale" otro electrón por el extremo opuesto de forma que el conductor eléctrico SIEMPRE TIENE EL MISMO NUMERO DE ELECTRONES LIBRES DENTRO DE EL. Se puede decir que LA VELOCIDAD CON QUE REACCIONAN TODOS LOS ELECTRONES LIBRES DEL CIRCUITO "EN CONJUNTO" SI QUE SE ACERCA A LA VELOCIDAD DE LA LUZ, SIN EMBARGO VISTOS UNO POR UNO LOS ELECTRONES CASI NO SE MUEVEN. ¡Curioso!...¿No?.

Otro detalle, aunque sea adelantarnos al estudio, es que cuando tratamos con corrientes alternas de alta frecuencia (no te preocupes, ya veremos que significa esto mas adelante) los electrones "prefieren" circular por la periferia de los conductores, es decir, por la parte mas "exterior", dejando el centro del conductor prácticamente sin electrones libres. Este efecto se llama "efecto pelicular" o "efecto Kelvin" y lo podemos ver representado en el dibujo. Hasta aquí el artículo dedicado a la intensidad de corriente eléctrica. En nuestro próximo artículo hablaremos de la unidad utilizada para medir la intensidad de corriente eléctrica, el AMPERIO. Te esperamos.

 
C O M E N T A R I O S   
  • Responder citando
  • Citar
RE: Intensidad de corriente eléctrica

#1 juan carlos » 25-09-2012 19:16

muy bueno me ha encantado

  • Responder citando
  • Citar
RE: Intensidad de corriente eléctrica

#2 deumarys » 02-03-2013 23:09

todo esta super tienen muy buen cotenido... me gusto mucho
gracias x la info sigan asi :-)

Por favor, usa el sistema de comentarios solo para añadir aclaraciones, ilustraciones, notas o interpretaciones del tema tratado en el artículo. Si deseas hacer una consulta, preguntar algo o solicitar ayuda, te rogamos encarecidamente que uses nuestro foro, sitio mas adecuado para ello y donde estamos seguros que recibirás cumplida respuesta a aquello que plantees. Queremos darte las gracias por tu comprensión.

Escribir un comentario



Código de seguridad
Refescar