Acceso



Registro de usuarios
Contáctenos
Teoría
El amperio

En el artículo anterior hemos relacionado la cantidad de cargas eléctricas (electrones) que circulan por un determinado punto de un circuito con el tiempo. Es lo que hemos quedado en llamar "intensidad de corriente eléctrica". De esta manera pordemos decir, por ejemplo, que por un conductor circulan 36 culombios por cada hora transcurrida con lo que estamos expresando el "caudal" de la corriente eléctrica, o dicho técnicamente su intensidad. Sin embargo, en electrónica no se utiliza esta manera de medir la intensidad de corriente ya que tendríamos que manejar dos parámetros, la carga y el tiempo, cosa que es engorrosa,  incómoda y muy poco adecuada.

Lo que se hace en la práctica es utilizar una unidad que englobe y combine a ambos, tanto a la carga como al tiempo, ya que ambos están íntimamente ligados cuando hablamos de una corriente eléctrica al tratarse esta de electrones (cargas) en movimiento (tiempo). La unidad que se utiliza universalmente para medir la intensidad de una corriente eléctrica es el AMPERIO, bautizado así en honor al matemático y físico francés André-Marie Ampère considerado como uno de los descubridores del electromagnetismo. En este artículo vamos a explicar que es exactamente el amperio, que instrumento necesitamos para medirlo y cual es la manera correcta de colocar este instrumento en un circuito. ¿Nos sigues?

Leer más...
Artículos Relacionados
Otros Temas Interesantes
Noticias
Construcción fácil de mini receptores de radio

Pequeño manual en el que se enseña a construir 30 sencillos receptores de radio basados en el radio galena.

Muy interesante para los que tienen en proyecto la construcción de uno de estos dispositivos, ya que ofrece la posibilidad de elegir entre un gran número de modelos diferentes. Autor Juan Garriga. Ediciones Cedel.

Leer más...
Radioaficionados
Construcción fácil de un radio galena

Construir un radio galena siempre es algo que tiene su encanto. Oir la radio mediante una serie de componentes que nosotros mismos hemos ensamblado, y sin que intervenga además ningún tipo de pila, batería o fuente de alimentación es algo que, cuando se logra por primera vez, deja huella y se recuerda a lo largo de los años.

Claro que, para que eso ocurra, uno debe apreciar la radio, sentir atracción por ella. No limitarse a ser solo un escuchante (participio activo del verbo escuchar) sino ser sobre todo un "amante laborioso". Y eso es precisamente lo que nos pasa a muchas personas. Todavía, en la época en que vivimos, tenemos la radio como algo extraordinario y fascinante a pesar de que Internet haya invadido nuestras vidas y nuestros hogares. Nosotros pertenecemos a ese tipo de gente que pensamos que ambas cosas se complementan, y que además ninguna de ellas puede sustituir a la otra.

Por esta última razón, aún hoy disfrutamos cuando tenemos el placer de fabricar un simple radio galena. Por esta última razón hemos querido publicar este artículo en el que vamos a exponer con todo lujo de detalles como fabricarse un receptor de este tipo y posteriormente, en otros artículos, mejorarlo con algún aditamento extra. ¿Nos sigues?.

Leer más...
Miscelanea
Sencillo VU-Meter a diodos LED

Lejos quedan aquellos tiempos en los que todos los medidores, y al decir todos me refiero a TODOS, estaban construidos mediante un galvanómetro y la lectura se realizaba con una aguja que parecía deslizarse al recorrer una escala graduada.

A decir verdad, para aquellos que en cierta manera somos de "la vieja escuela", los referidos medidores, midieran lo que midieran, tenían un encanto muy especial y podría decirse que sentimos "morriña" cuando los recordamos, como diría un gallego al estar lejos de su tierra y escuchar el sonido de una gaita.

Pero llegaron los diodos LED y se hizo la luz. Desde entonces, son muchos y muy variados los VU-Meters, vúmetros o medidores de unidades "VU" (del inglés Volume Unit) que se han desarrollado incorporando este componente electrónico, sobre todo usando la tecnología de la integración.

Pero en este artículo no vamos a publicar la información técnica para construir uno de estos instrumentos con los clásicos circuitos integrados UAA170 o UAA180 ni con cualquier otro. Tampoco vamos a enseñarte a conectar esas "barritas" LED con diferentes diseños. ¡Con ellas practicamente lo tienes todo hecho!.

En este artículo vamos a enseñarte como construir un VU-Meter LED con componentes discretos. ¡Dale ya al "Leer completo..." para saber más!.

Leer más...
Práctica
El electroscopio

Llegó la hora de realizar nuestra primera práctica electrónica. Una vez que hemos estudiado la electricidad estática estaría bien ver los efectos que produce esta mediante un artilugio construido por nosotros mismos.

En este artículo vamos a explicar que es un electroscopio y además vamos a fabricar uno con materiales muy comunes a practicamente costo cero. Siendo un instrumento sumamente fácil y económico de construir, con él podremos ver los efectos de la electricidad estática estudiados en el artículo anterior.

William Gilbert (1544-1603), médico y físico inglés, fué la persona que construyó por primera vez un electroscopio para realizar experimentos con cargas electrostáticas. Acérrimo defensor de la teoría copernicana, sus mayores aportaciones a la ciencia tratan sobre electricidad y magnetismo. Al mostrar que el hierro a altas temperaturas (al rojo) no presenta alteraciones magnéticas, se adelantó a los modernos descubrimientos de Curie. Aunque actualmente el instrumento inventado por Gilbert no es más que una pieza de museo, existiendo herramientas muchísimo mas modernas para estos menesteres, resulta muy instructiva su construcción. Prepárate pués para empezar a experimentar con la electricidad estática.

Leer más...
Teoría
Los semiconductores - Introducción

Las válvulas de vacío mantuvieron su supremacía a lo largo de 40 años. Sin embargo, su bajo rendimiento era una especie de espada de Damocles que tarde o temprano acabaría con su existencia y su popularidad.

Una válvula de vacío consume un watio para poder amplificar solo la millonésima parte de esa potencia (1 µW). Sin embargo, los transistores modernos logran rendimientos en determinadas ocasiones muy superiores al 50% y la potencia necesaria para su funcionamiento es un millón de veces menor de la que exige una válvula termoiónica.

Cuando aún no había aparecido el diodo de germanio, antes de 1940, los semiconductores aparecían rodeados de cierto halo de misterio. Se trataba de materiales que no disfrutaban de la conductibilidad de los metales, pero al mismo tiempo tampoco podían considerarse aislantes.

Sin embargo, en un corto periodo de tiempo las investigaciones al respecto avanzaron vertiginosamente y, en muy pocos años, los semiconductores fueron sustituyendo a las válvulas en la mayoría de las aplicaciones.

Comenzamos a partir de ahora el estudio de esta atractiva rama de la electrónica, los semiconductores. ¿Te atreves a continuar con nosotros?.

Leer más...
Noticias
Un maravilloso rincón de la sierra de Cádiz

Hoy me levanté decidido a dar una vuelta por la sierra de mi querida Cádiz. Quise olvidarme de las bobinas, de los condensadores, de las antenas y de los electrones. Tenía la necesidad de respirar aire fresco, aire puro libre de la contaminación de la gran ciudad. Me coloqué la camisa, el pantalón, los zapatos y cogí las llaves del coche. Lo puse en marcha y emprendí el viaje hacia el destino elegido.

Iba conduciendo tranquilamente cuando vi la indicación de la salida hacia "Arcos de la Frontera". Quise sorprender a mi mujer, que dicho sea de paso venía conmigo porque me acompaña a todas partes, y de pronto grité... ¡¡vamos a visitar esta localidad!!. Ella asintió y generosamente dijo... ¡¡vamos allá!!.

Leer más...

El transformador

Corría el año 1851 cuando el físico alemán Heinrich Daniel Ruhmkorff ideó la bobina que lleva su nombre. Se trataba de un generador que permitía producir tensiones elevadísimas, del orden de decenas de miles de voltios, a partir de la corriente continua de una batería. Con ello se logró conseguir la fuente de tensión necesaria para crear diferentes dispositivos que posteriormente traerían grandes beneficios para la humanidad.

La bobina de Ruhmkorff fué utilizada, por ejemplo, por Heinrich Rudolf Hertz para la realización de sus experimentos con ondas electromagnéticas, lo que significaría los inicios de la radio. También comenzó a utilizarse en los equipos de rayos X como generador electrovoltáico de alta tensión y en los equipos telegráficos de la época. Además, la invención de Ruhmkorff se utilizó en investigaciones relacionadas con diferentes ramas de la física y de la química.

En realidad, Heinrich Daniel Ruhmkorff lo que diseñó fué el primer transformador eléctrico, ya que de lo que se trataba era de un bobinado primario con unas pocas espiras de hilo relativamente grueso por el que se hacía circular una corriente continua pulsante y de un devanado secundario con muchísimas espiras más que el primario y realizado con hilo mas fino. Por lo tanto, Ruhmkorff tuvo el privilegio de fabricar el primer transformador elevador de la historia de la humanidad. ¿Quieres seguir aprendiendo cosas relacionadas con los transformadores? Sigue leyendo, por favor.

La verdad es que en uno de nuestros artículos dedicados al electromagnetismo ya te hemos hablado del transformador inventado por Ruhmkorff, aunque allí no te dimos referencias de ello. ¿Recuerdas el circuito de la pila conectada a través de un interruptor a la bobina primaria de un transformador y en cuya bobina secundaria recogíamos una corriente inducida que se encargaba de reflejar un galvanómetro conectado a ella? Mira el dibujo adjunto para refrescarte la memoria. Eso es lo que hizo el físico alemán afincado en Francia, solo que él colocó el interruptor en las cercanías del nucleo del transformador para que conectara y desconectara el circuito de forma completamente automática, obteniendo así una corriente pulsante por el bobinado primario que a su vez inducía en el secundario, de muchísimas más espiras que el primario, una tensión inducida de un valor bastante elevado.

Para entenderlo mejor vamos a modificar el circuito de acuerdo a lo que hizo exactamente Ruhmkorff. El interruptor no será manual sino magnético, y además estará expuesto al flujo creado por el propio nucleo de la bobina. En principio el interruptor estará cerrado y circulará corriente por el primario del transformador (ver ilustración "A"). En ese momento la rápida subida de la corriente a través del devanado primario provocará dos cosas; Primero inducirá en el devanado secundario una tensión muchísimo mayor que la existente en el primario ya que dicho devanado secundario estará compuesto de muchísimas más espiras que el primario. En segundo lugar, y al mismo tiempo que lo anterior, creará un flujo magnético canalizado por el nucleo de hierro que atraerá al interruptor fabricado de material magnético.

Debido a la atracción ejercida por el nucleo, el interruptor se abre. Ahora también pasan dos cosas; Primero se induce en el secundario una f.e.m. que tiende a impedir la bajada repentina de corriente en el primario, y como ya se ha explicado, dicha f.e.m. es mucho mas elevada que la tensión de la pila ya que el secundario tiene muchísimas más espiras que el primario. En segundo lugar, y prácticamente al unísono, el flujo magnético del nucleo cesa de repente al haber cesado la corriente que lo producía, por lo que el interruptor vuelve a su posición de reposo y cierra de nuevo el circuito, volviendo a la posición inicial y haciendo que de nuevo circule corriente por el primario. El ciclo vuelve a empezar.

El resultado de todo esto es que en el secundario se crea una d.d.p. elevadísima, de miles de voltios, los cuales pueden llegar a producir un arco voltáico entre los terminales de salida de dicho devanado. Esta elevada tensión es la que se aprovecha para utilizarla en las aplicaciones que ya se han comentado anteriormente. Si quieres ver una simulación animada de todo lo explicado haz clic aquí y podrás ver la bobina de Ruhmkorff en acción. Observa en la animación como entre los terminales de salida del secundario se produce un arco voltaico (chispas) provocado por la alta tensión presente en ellos. Este fué el primer transformador de la historia, el cual era del tipo elevador ya que lo que hacía era elevar la tensión presente en el primario. Como habrás deducido también existen los transformadores reductores, los cuales reducen la tensión aplicada al primario, con menos espiras en el secundario que en el primario.

Recordemos que el transformador trabaja siempre con corrientes variables, ya que si le aplicamos una corriente continua pura al primario, resulta que en el secundario no vamos a obtener absolutamente nada. La corriente alterna senoidal, estudiada en el artículo dedicado al alternador (generador de corriente alterna), es la corriente ideal para estudiar el comportamiento de los transformadores ya que produce un flujo magnético variable en el tiempo. Además, el tipo de corriente alterna senoidal tiene, como veremos más adelante, un peso específico muy importante en infinidad de aplicaciones prácticas.

Precisando conceptos, diremos que un transformador se compone como mínimo de dos devanados, y decimos como mínimo porque nos podemos encontrar transformadores con varios devanados en el secundario. De esta manera es posible conseguir, a partir de solo un valor de tensión alterna en el primario, varias tensiones también alternas de diferentes valores en los respectivos secundarios. Normalmente los devanados de un transformador se enrollan sobre un nucleo de hierro para aumentar su rendimiento, ya que este canaliza totalmente el flujo magnético en virtud de su alta permeabilidad, según hermos estudiado en artículos precedentes. Debemos tener claro que al primario se le aplica la tensión original que queremos transformar y en el secundario, o secundarios, recogemos la tensión una vez transformada. Además, tienes que saber que un transformador convencional es reversible, es decir, que lo que antes hemos usado de secundario puede actuar de primario con solo aplicarle la corriente original a él, en cuyo caso lo que antes era el primario ahora será el secundario.

Debemos tener en cuenta que el flujo magnético variable creado por la corriente aplicada al primario afectará por igual a los dos devanados, primario y secundario, de lo que se deduce que la relación de tensiones entre primario (Vp) y secundario (Vs) (llamada relación de transformación) dependerá a su vez de la relación entre la cantidad de espiras que tenga cada uno de dichos devanados. Si la cantidad de espiras que devanamos en el secundario es el doble de las que existen en el primario la tensión que se genere en el secundario (Vs) será el doble que la que apliquemos al primario (Vp) y por lo tanto tendremos un transformador elevador. Si lo hacemos al contrario, un secundario con la mitad de espiras que el primario, la tensión del secundario (Vs) será la mitad que la que apliquemos al primario (Vs), por lo que tendremos un transformador reductor.

Como habrás adivinado nos queda una última posibilidad, que el número de espiras del primario sea el mismo que las del secundario. En este caso las tensiones de primario y secundario serán idénticas y su relación de transformación será de 1:1. Seguro que te estarás preguntando si un transformador así tiene alguna utilidad. ¿Para que rayos se puede utilizar un transformador así, que ni reduzca ni eleve la tensión?. Pués decirte que además de elevar y reducir tensiones alternas el transformador tiene la cualidad de aislar galvánicamente el circuito conectado al primario del conectado al secundario, por lo que a veces se utiliza como elemento de seguridad, amén de otros usos que no vienen ahora al caso. En definitiva, debemos que tener claro que la relación de transformación Vp/Vs depende del numero de espiras de cada uno de los devanados, es decir, del número de espiras del primario (Ep) y del número de espiras del secundario (Es). De esta manera se cumple que Vp/Vs = Ep/Es. Grabemos esta proporción en nuestra mente.

De otro lado tenemos el tema de la potencia manejada por el transformador. Recordemos la ley fundamental de la energía estudiada en los primeros artículos de este blog: "La energía no se crea ni se destruye, solo se transforma". Por lo tanto tenemos que la potencia, que no es ni mas ni menos que la energía por unidad de tiempo, ha de ser la misma en el primario que en el secundario, es decir que la Potencia del primario (Wp) = la Potencia del secundario (Ws). Si tenemos que la potencia es igual al producto de la tensión por la intensidad, es decir que Potencia (W) = Tensión (V) x Intensidad (I), esto significa que Vp x Ip = Vs x Is, o lo que es lo mismo que el producto de la tensión por la corriente del primario es igual al producto de la tensión por la corriente del secundario.

Lo que hemos dicho en el párrafo anterior significa que podemos añadir a la proporción indicada antes otra razón dependiente en este caso de la intensidad de corriente. Aclaremos esto: Si hemos dicho que el producto de la tensión por la corriente en el primario (Vp x Ip) es igual al producto de la tensión por la corriente en el secundario (Vs x Is) (o expresado matemáticamente Vp x Ip = Vs x Is) resulta que si cambiamos de miembro los términos Vs e Ip tenemos que Vp/Vs = Is/Ip por lo que estamos en condiciones de añadir a la proporción anterior otra nueva dependiente de la corriente que circula por los dos devanados:

Esto no viene a significar otra cosa que si necesitamos aumentar la tensión de nuestra antigüa red eléctrica de 110 voltios hasta los 220 voltios actuales (justo el doble de tensión para que el ejemplo se entienda) el consumo de corriente en el primario siempre será el doble que la que esté suministrando el secundario (suponiendo un transformador ideal sin pérdidas). O expresado de otra forma, como la potencia debe ser igual en los dos devanados si la corriente exigida por la carga conectada al secundario en un momento dado es de 1 amperio la que le va a exigir el primario a la red de distribución eléctrica será de 2 amperios para que se cumpla la igualdad de potencias en cada uno de los devanados. Es importante pués saber exactamente que potencia máxima puede soportar un transformador y no sobrepasarla nunca para no dañarlo.

Hasta ahora hemos supuesto que nuestro transformador no pierde nada de la energía que maneja, pero esto no es así en realidad. Como hemos dejado entrever en el párrafo anterior, los transformadores sufren pérdidas de energía por diferentes motivos. Por ello, hay que tener ciertas precauciones en su construcción y utilizar técnicas especiales que veremos a lo largo de nuestro estudio. Esto lo vamos a dejar para un nuevo artículo en el que ahondaremos más en esta materia. Nos vemos.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +