Acceso



Registro de usuarios
Contáctenos
Teoría
Fuerza y trabajo

Para todo en la vida se requiere esfuerzo y el aprendizaje de la electrónica y la radio no son una excepción. Para comenzar a estudiar esta ciencia se requieren ciertos conocimientos básicos sin los cuales resulta imposible comprender la gran cantidad de fenómenos que se producen en el interior de un equipo de radio, y conseguir que el sonido recogido en el centro emisor (que puede estar a miles de kilómetros) pueda recibirse con asombrosa nitidez en nuestros receptores. Pero no te desanimes... vamos a explicartelo de una forma muy sencilla... ¡Vayamos por partes!.

Para comenzar utilicemos nuestro sentido común (si, es un tópico pero es cierto... el menos común de los sentidos). Para que un receptor de radio funcione ¿que necesita de forma imperiosa?... La electricidad... ¡Muy bién!. Eres muy listo. Seguro que antes de leerlo ya lo habías adivinado. Es la electricidad la que hace posible el proceso de transformación del sonido en ondas electromagnéticas en la emisora y posteriormente convertir estas señales de nuevo en algo audible y entendible por el ser humano en el receptor de radio. Por lo tanto, no se puede concebir que estemos tratando temas de electrónica y radio sin dedicar algunas palabras al estudio de la electricidad como base para poder asimilar los conocimientos subsiguientes.

Leer más...
Otros Temas Interesantes
Noticias
Versión 10.5.0.310 de Coil32

Presentamos la nueva y última versión a fecha de hoy (10.5.0.310) del software de cálculo de bobinas y circuitos resonantes LC "Coil32".

Como en la versión anterior, la interface está debidamente traducida al castellano por nosotros, ya que la traducción que incorpora la versión original está plagada de errores e inexactitudes.

En esta versión se ha incorporado entre otras cosas el cálculo de bobinas multicapas, las cuales podrán o no incluir capas intermedias aislantes.

Leer más...
Radioaficionados
Indicador de fusible fundido

A todo buen radioaficionado que se precie le gusta llevar a cabo sus propios montajes electrónicos. A continuación vamos a presentar uno que creemos muy interesante para ellos, ya que nos va a avisar en caso de que el fusible de nuestro equipo se funda, cosa que cuando nos ocurre nos deja un poco desconcertados, sin saber muy bién en un principio que es lo que está pasando.

El circuito no es difícil de llevar a la práctica y está compuesto de muy pocos componentes, los cuales son de muy fácil localización y de bajo precio. Creemos que merece la pena construir este pequeño circuito. Nos servirá de práctica recreativa y también nos ayudará a familiarizarnos un poco con los diferentes componentes electrónicos.

Además, la información la complementamos con un video en el que se explica con todo lujo de detalles su funcionamiento, y mediante el cual vamos a poder ver en tiempo real como funciona el dispositivo. También tendrás toda la información necesaria para construirte tu mismo el aparatito (diseño del circuito impreso, distribución de componentes, etc...). Todo ello te lo podrás bajar de la zona de descargas. ¿Te apuntas?.

Leer más...
Miscelanea
Tira a matar - Juego de reflejos

¿Con que rapidez responde tu cuerpo a los impulsos externos?. ¿Cuanto tiempo necesitarías para reaccionar ante un peligro inminente?. Si oyes un disparo cercano ¿tus reflejos te hacen "salirte del pellejo"?.

Para poner a prueba la rapidez de respuesta a tus estímulos nerviosos hemos ideado un pequeño circuito con el que podrás medirte en este aspecto con otra persona, y de paso cultivar la faceta "reflexológica" del ser humano. Se trata de algo así como un duelo, lógicamente sin pistolas y sin balas pero eso si, al ser del todo electrónico, con botones y con luces.

Una vez construido el dispositivo se dispondrán dos botones de mayor o menor tamaño, los cuales accionarán sendos pulsadores conectados a nuestro circuito. Al oir una señal, los dos participantes se apresurarán a pulsar su correspondiente botón.

El más rápido de los dos se llevará el gato al agua y ganará el juego. Su victoria quedará fehacientemente constatada porque la luz que le corresponde indicará ese hecho.

Comenzamos con esta reseña una nueva categoría de artículos a la que llamaremos "Miscelánea", en la que tendrán cabida una amplia variedad de temas con multitud de contenidos. Esperamos que esta novedad sea de tu agrado.

Leer más...
Práctica
Soldador de temperatura controlada económico

Si es la primera vez que vas a comprarte un soldador es muy probable que te encuentres en una disyuntiva. En primer lugar, no tienes ni idea a que tipo de trabajos vas a enfrentarte y por ese motivo no te decides por una punta determinada.

Después está el tema de la potencia necesaria para el calentamiento: ¿Estarían bien 15W? ¿o quizás serían deseables 30W? ¿Prefieres a lo mejor un soldador de 60W para trabajos de cierta entidad?.

La evidente realidad es que el soldador tendría que elegirse en consonancia con el tipo de trabajo que uno vaya a realizar. Para soldaduras de componentes muy pequeños, delicados y los de tipo SMD es preferible un soldador de punta fina y de unos 15 watios. Sin embargo, si vas a usarlo para trabajos mas generales (componentes estandar, cables de conexión de cierto grosor, etc...) lo mejor sería acudir a uno de más potencia, como por ejemplo 30 watios.

Y si haces montajes que necesiten de alguna soldadura a masa localizada en la propia caja o chasis metálico del aparato que construyes, entonces lo mejor sería uno de 60 watios como poco y con un generoso tamaño de punta que permita el calentamiento de una zona amplia, de manera que esa soldadura no te salga "fria".

La pregunta que surge es: ¿no existe un soldador que permita la consecución óptima de la mayoría de los trabajos que un técnico electrónico realiza normalmente hoy dia?. La respuesta la tienes a continuación.

Leer más...
Teoría
Los semiconductores - Introducción

Las válvulas de vacío mantuvieron su supremacía a lo largo de 40 años. Sin embargo, su bajo rendimiento era una especie de espada de Damocles que tarde o temprano acabaría con su existencia y su popularidad.

Una válvula de vacío consume un watio para poder amplificar solo la millonésima parte de esa potencia (1 µW). Sin embargo, los transistores modernos logran rendimientos en determinadas ocasiones muy superiores al 50% y la potencia necesaria para su funcionamiento es un millón de veces menor de la que exige una válvula termoiónica.

Cuando aún no había aparecido el diodo de germanio, antes de 1940, los semiconductores aparecían rodeados de cierto halo de misterio. Se trataba de materiales que no disfrutaban de la conductibilidad de los metales, pero al mismo tiempo tampoco podían considerarse aislantes.

Sin embargo, en un corto periodo de tiempo las investigaciones al respecto avanzaron vertiginosamente y, en muy pocos años, los semiconductores fueron sustituyendo a las válvulas en la mayoría de las aplicaciones.

Comenzamos a partir de ahora el estudio de esta atractiva rama de la electrónica, los semiconductores. ¿Te atreves a continuar con nosotros?.

Leer más...
Noticias
SMD Codes Databook 2014 edition

SMD Codes Databook 2014 edition

Libro electrónico de datos (Databook) de códigos SMD edición 2014 en formato electrónico de Eugeniu Turuta. Códigos SMD de componentes semiconductores activos.

Leer más...

Oscilador de laboratorio hasta 200 MHz

Para un radioaficionado es importantísimo saber usar y manipular los circuitos resonantes. Conocer a que frecuencia oscila uno de estos circuitos es, la mayoría de las veces, uno de los problemas mas habituales con los que tiene que enfrentarse el experimentador.

No obstante, en muchas ocasiones no se dispone del instrumental adecuado para realizar una medida de este tipo. Aunque es posible que dispongamos de un frecuencímetro, en la mayoría de las ocasiones no es suficiente, ya que es probable que no tengamos los medios para hacer oscilar al circuito tanque en cuestión.

Por esta razón, traemos a nuestro blog un pequeño dispositivo con el que podremos realizar esta medida con total seguridad y fiabilidad, además de ser útil para otros menesteres. Básicamente se trata de un oscilador al que únicamente le falta el circuito resonante objeto de nuestra medición. Dicho oscilador se acompaña de la circuitería necesaria para poder usarlo con nuestro frecuencímetro sin que el acoplamiento de este último afecte lo más mínimo a su frecuencia de resonancia. Y lo mejor de todo es que este circuito puede hacer oscilar "casi cualquier cosa que tenga espiras".

El montaje se lleva a cabo con solo seis transistores, uno de ellos el conocido JFET de canal "N" tipo BF-245, de muy fácil localización en el mercado, e incorpora técnicas para estabilizar la amplitud de la señal producida dentro de unos márgenes razonables, pudiendo llegar a oscilar hasta casi los 200 MHz.

Para no complicar mucho la construcción del oscilador se ha implementado una configuración muy sencilla en base a dos transistores montados como pseudo-multivibrador, al cual solo le hace falta el circuito resonante necesario para comenzar a funcionar. El esquema es el que mostramos a continuación. Puedes hacer clic en él para abrirlo en una nueva ventana y verlo con más comodidad.

Como puedes apreciar, no se trata de un circuito demasiado complicado. La señal del oscilador se toma del propio circuito resonante y se aplica a la puerta del JFET BF-245, el cual no lo cargará en absoluto en base a su altísima impedancia de entrada, por lo que este acoplamiento no modificará la frecuencia del oscilador.

Después de la amplificación introducida por el JFET la señal ha adquirido cierta amplitud, pero aún no es suficiente para el uso que nos hemos propuesto. Por eso tomaremos dicha señal del drenador del BF-245 y la aplicaremos a la base del transistor T5 (BF-199) montado en configuración de emisor común. La amplificación introducida por este último hace que nuestra señal tenga ya la amplitud adecuada para utilizarla según nuestros propósitos.

Posteriormente, del colector de T5 tomaremos la señal y la aplicaremos a la base de T6 (otro BF-199) el cual en este caso está montado como seguidor de emisor o colector común, y aunque prácticamente no amplifica si que consigue una baja impedancia de salida y una total independencia de la señal de entrada. La salida de este transistor se aplicará directamente a nuestro frecuencímetro.

Se ha incorporado al circuito una especie de control automático de nivel mediante el transistor T3 (BC-557) para estabilizar la amplitud de la señal de salida e intentar que ésta fluctúe lo menos posible dentro del margen de frecuencias en el que opera el oscilador. Para realizar este trabajo, mediante el condensador C5 (330KpF) y la resistencia R3 (1KΩ) se toma parte de la señal amplificada por T5 y se rectifica mediante los diodos D1 y D2 (ambos del tipo 1N4148).

La tensión continua así obtenida sirve para controlar la polarización del transistor T3, de manera que mediante él se modificará la tensión de alimentación aplicada al oscilador formado por T1 y T2, aumentando ésta cuando la amplitud de la señal disminuya, y bajándola cuando la amplitud de la señal aumente.

Debemos hacer notar que este circuito no funcionará conectándole solo una bobina, siendo necesario SIEMPRE colocar un condensador en paralelo con ella, formandose así el circuito tanque correspondiente que hará arrancar al oscilador.

También debemos indicar que el circuito ha de alimentarse con una tensión estabilizada de 12 voltios si se desea obtener una estabilidad de frecuencia elevada. Si se utiliza un alimentador no estabilizado se correrá el riesgo de que nuestro oscilador no disfrute de esa ansiada virtud.

En el esquema anterior proponemos un sencillo circuito para obtener los 12 voltios estabilizados necesarios para alimentar nuestro oscilador. El alma del alimentador lo constituye un simple regulador de tensión positiva de 12 voltios tipo 7812, completandose el montaje con todos sus componentes asociados. Puedes hacer clic en él para verlo con más comodidad.

Nos gustaría resaltar que este circuito oscilador tiene una infinidad de utilidades además de la que ya hemos dejado entrever. Con él no solo podremos comprobar los transformadores de F.I. de receptores en 455 KHz y por supuesto también los de 10,7 MHz, sino también obtener una señal de alguna de estas frecuencias para el ajuste de receptores.

Efectivamente, conectando un transformador de F.I. al oscilador se podrá comprobar, al girar su núcleo de ferrita, las frecuencias máxima y mínima a las que es capaz de ajustarse, frecuencias que podremos leer en el frecuencímetro conectado a nuestro oscilador.

Nuestro circuito, al poder funcionar dentro de un gran ancho de banda, también puede ser útil si necesitamos una señal de B.F., ya que si conectamos a su entrada una inductancia suficientemente elevada, conjuntamente con un condensador de una capacidad apropiada, podremos obtener una señal para ajustar filtros de audio, por ejemplo.

También tendremos la posibilidad de medir la capacidad de un condensador si lo conectamos a una inductancia de la cual conocemos su valor, y viceversa, medir la inductancia de una bobina conociendo el valor del condensador conectado a ella en paralelo. En fin, como puedes ver las posibilidades son ilimitadas.

A la hora de hacer el montaje procura que las conexiones sean lo más cortas posibles. De esta manera la frecuencia máxima de utilización del oscilador será la más alta posible. Si descuidas este punto es posible que el oscilador no consiga funcionar en frecuencias altas.

Si no dispones de frecuencímetro, aún podrás usar este oscilador como un perfecto generador de señal de alta y baja frecuencia. Para ello, en vez de usar un condensador fijo en el circuito oscilante, usa un condensador variable que te permita un margen de frecuencias determinado según tus necesidades.

Puedes bajarte el diseño de la placa de circuito impreso adecuado para este montaje, así como la distribución de componentes, de la zona de descargas de nuestra web.

 
C O M E N T A R I O S   
Probar ancho de banda de osciloscopios con cristal

#7 Thomas Hoffmann » 19-12-2020 02:06

Disculpen en mi anterior comentario olvidé preguntar si en vez del circuito resonante se puede poner un cristal de cuarzo de 100Mhz. Denuevo gracias.

Probar ancho de banda de osciloscopios

#6 Thomas Hoffmann » 19-12-2020 01:38

Llevo tiempo buscando una oscilacion de aproximadamente 100 Mhz ,he hecho varios circuitos y ninguno de ellos consiguio pasar de 17 Mhz, he adquirido toda clase de componentes para hacerlo, inductancias, cristales de cuarzo, etc y estoy a punto de perder la paciencia pero no de desistir, Tratare de hacer el esquema que muestran aqui, y ojalá me funcione, le estatria eternamente agradecido. Muchisimas gracias por la informacion.

CONSULTA

#5 P. Alejandro » 11-09-2019 16:00

MUY BUEN CIRCUITO! Lo voy a armar! Una consulta, los capacitores que tienen la letra "K" (100K) que significan? 100.000 pf?

RE: Saludos

#4 Ernesto Hernández » 24-05-2018 20:19

:pns: Alguien ha construido este circuito de manera práctica? Funciona? Qué tan pura es la onda generada a una frecuencia de 150MHz?

Saludos

#3 Pablo Granda » 25-10-2017 17:43

hola una consulta que simulador usa para realizar la simulación del circuito

Re:oscilador de laboratorio

#2 jose » 26-01-2015 01:53

Excelente trabajo. Voy a armar el circuito y lo probare hasta maxima frecuencia. Gracias!

RE: Oscilador de laboratorio hasta 200 MHz

#1 julio cesar » 27-10-2014 18:26

ES FANTASTICO ESA LABOR. :lol:

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.