Acceso



Registro de usuarios
Contáctenos
Teoría
La resistencia eléctrica

Seguramente te habrás dado cuenta de que cada vez que hemos hablado de circulación de la corriente electrica hemos dicho que lo hace a través de un conductor o un hilo conductor. A nadie se le ocurriría hacer un circuito con hilo de nylon porque jamás conseguiría que la corriente eléctrica circulara a través de él. Al hablar de hilos conductores nos referimos a hilos o cables metálicos ya que son este tipo de materiales los que mejor conducen la corriente eléctrica. De hecho existen materiales que permiten el paso de la corriente a su través sin apenas ninguna dificultad. Estos materiales son los llamados CONDUCTORES y la plata se lleva la palma de todos ellos siendo el metal mejor conductor que existe.

Sin embargo, el metal conductor más utilizado en instalaciones eléctricas no es la plata, como cabe suponer debido a su alto precio, sino el cobre. Sin ser tan buen conductor como la plata, su precio mas bajo y su gran ductilidad (propiedad de poder deformarse de forma continuada sin romperse) que permite obtener hilos muy finos, hacen del cobre el conductor eléctrico por excelencia en la mayoria de las industrias. En este artículo vamos a hablar de los buenos y los malos conductores de la electricidad, pasando por los que están en la zona intermedia. ¿Nos sigues?.

Leer más...
Otros Temas Interesantes
Noticias
Revista 27 MHz - Fascículo 4

Fascículo Nº 4 de la revista "27 MHz" dedicada a la CB (Banda Ciudadana).

Extracto de su contenido: Circuitos PLL, teoría de antenas (IV), amplificador de voz, antena vertical de balcon, incorpora un VOX a tu radioteléfono, fuentes de alimentación con reguladores fijos, comprobación y medida de semiconductores, diodos zener, código Q, argot y otros códigos, etc...

Leer más...
Radioaficionados
Receptor a reacción para Onda Corta (I)

El principio de la reacción fue ampliamente utilizado por los radioaficionados en los albores de la radio, cuando aún los transistores no habian hecho su aparición en el escenario electrónico.

Los primeros receptores a reacción con válvulas de vacío tuvieron tal aceptación que fueron los preferidos durante muchos años por aquellos que no disponían de la capacidad económica para adquirir un equipo comercial, o bien no tenían los conocimientos técnicos necesarios para la construcción y ajuste de un receptor superheterodino, bastante más complejo de llevar a la práctica y de poner a punto.

Efectivamente, la construcción de un receptor regenerativo, como también suele llamársele, no es nada dificultosa y, por si fuera poco, prácticamente no requiere de ningún ajuste complicado. Además, y para seguir añadiéndole ventajas, los resultados que con él pueden obtenerse casi nunca defraudan. Con solo unos pocos componentes su sensibilidad puede llegar a ser extraordinaria, acercándose mucho a los receptores más sofisticados.

Y para seguir contándote ventajas te diremos que ahora es más fácil que nunca construir uno de estos equipos, ya que afortunadamente podemos usar transistores modernos en lugar de válvulas termoiónicas, sin necesidad de acudir a las altas tensiones de alimentación necesarias para estas últimas. Con solo una pila y algunos componentes más podremos disfrutar de nuestro receptor de Onda Corta en un plis-plas. ¿Te apuntas?.

Leer más...
Miscelanea
Monitor para la batería del automóvil

Es curioso, pero la verdad es que a todos nos ha pasado alguna vez lo mismo. Nos levantamos una mañana de frio invierno, con prisas porque tenemos el tiempo justo para llegar al trabajo (el que tenga esa suerte). Introducimos la llave de contacto de nuestro auto y la giramos. ¡SORPRESA!... el motor de arranque no voltea o lo hace con desgana.

El coche no furula, no arranca... Entonces algunos manifestamos nuestro enfado en un idioma desconocido, emitiendo ciertos sonidos guturales como.... "Grrrrrrrrr!!!!!". Otros, algo más "expresivos", comenzamos a lanzar por nuestra boquita ciertos vocablos malsonantes, dirigidos sobre todo hacia nuestro sufrido auto que ya tiene, como poco, cinco o seis años.

Sin embargo, esta situación la podríamos haber evitado si hubieramos tenido instalado el circuito que describimos en el presente artículo. Se trata de un simpático piloto de color rojo que nos avisará antes de tiempo de que ha llegado la hora de sustituir la batería de nuestro coche.

Si has leido los dos primeros artículos de la sección "Básico" estamos seguros que no vas a tener problemas para asimilar lo que sigue. ¡Vamos allá!

Leer más...
Práctica
La soldadura

"Teoría sin práctica es parálisis y práctica sin teoría es ceguera". Con la primera parte de esta frase, cuya autoría desconocemos, podemos resaltar la importancia de que cualquier cosa que estudiemos siempre vaya acompañada de ejercicios prácticos. De nada en absoluto nos sirve estudiar muy a fondo cualquier rama del saber si luego somos incapaces de poner en práctica lo aprendido. ¿Cuantos inventos han podido no ver la luz si su inventor no hubiera llevado a la práctica la idea, basada en su conocimiento teórico, que tuvo en un momento determinado?.

La segunda parte de la frase es tan cierta como la primera y, por desgracia, se da con bastante más frecuencia que su compañera en la vida real. Cuantas veces hemos contratado a un "profesional" para que nos haga un trabajo y al final, cuando ha terminado, vemos "la chapuza" que nos entrega. ¡Cuanta razón tenía Leonardo Da Vinci cuando expresó lo siguiente!: "Los que se enamoran de la práctica sin la teoría son como pilotos sin timón ni brújula que nunca podrán saber a donde van". Esto nos confirma que "práctica sin teoría es ceguera".

Pues bién, todo ello trasladado a la radio y la electrónica tiene una importancia decisiva. Por lo tanto, vamos a practicar un poco con algo esencial para construir nuestros circuitos de forma apropiada. ¿Que tal si aprendemos a soldar correctamente?. ¿Te gusta la idea?

Leer más...
Teoría
Las ondas (II)

Cuando hemos hablado del movimiento ondulatorio producido por la piedra que cae en el estanque de aguas tranquilas no hemos ahondado demasiado en su mecánica ni en sus peculiaridades. El estudio de tales ondas puede darnos muchas ideas y proporcionarnos algunos conocimientos relacionados con el resto de ondas, incluidas las ondas electromagnéticas utilizadas en las transmisiones de radio. Para un observador poco experimentado, las ondas producidas por la piedra al caer no son mas que unas pocas circunferencias que se dibujan en el agua y que se alejan del punto en donde cayó el pedrusco, aumentando progresivamente de diámetro y disminuyendo de intensidad. Sin embargo, hay mucha más información implícita en esas circunferencias de la que se ve a simple vista, solo que debemos conocer la manera de extraerla para así poder asimilarla.

Una vez dicho esto surgen algunas preguntas relacionadas con lo expuesto hasta el momento. ¿Que métodos podemos utilizar para conocer estas ondas mas a fondo? ¿Que podemos aprender de ellas que aplique también a los demás tipos de ondas? ¿Cuales son sus características principales? Todas las respuestas vienen a continuación.

Leer más...
Noticias
Piloto automático con supercondensador

Aunque lo hemos llamado "Piloto automático", puede que este proyecto no sea lo que esperas de él, aunque efectivamente se trata de un piloto automático porque es un piloto y además es automático.

El componente estrella de este montaje es un supercondensador. Quizás es algo poco conocido, ya que no suele usarse demasiado en los dispositivos electrónicos habituales.

Clica en Leer completo... y te cuento los detalles.

Leer más...

Introducción

Cada día que pasa la electrónica abre nuevos campos a la investigación, la industria y al bienestar humano. Millones de personas a través de toda la Tierra desarrollan su actividad dentro de una de sus ramas. A nosotros nos ha tocado vivir en esta época caracterizada por el vertiginoso desarrollo de esta ciencia y nadie es capaz de predecir donde acabará.

Sin embargo, nos hemos acostumbrado a ella y a nadie le sorprende en la actualidad tantas novedades y portentos debidos a la electrónica. Ya no nos llama la atención el "¡más difícil todavía!", pero estamos seguros de que quedaría asombrado si pudiera conocer y calibrar la naturaleza, los entresijos y todo lo que rodea a esta ciencia que está de moda. Nada mejor para ello que comenzar retrocediendo en el tiempo para recordar algunos hechos trascendentales que hicieron historia.

Corría el año 1896 cuando el ingeniero electrotécnico italiano Guglielmo Marconi consigue transmitir una señal a grandes distancias con su sistema de telegrafía sin hilos. El sistema utiliza una antena de su invención, continuando así los estudios del alemán Heinrich Hertz descubridor de las ondas electromagnéticas, que hoy se conocen como ondas hertzianas y que hacen honor a su nombre. Con este hecho nace, prácticamente, la ciencia electrónica.

A base de muchas horas de experimentación y con enorme paciencia, fueron conociéndose los efectos de la electricidad y fueron estableciéndose sus leyes. Con el tiempo, aprendieron a manejarla, conducirla e incluso acumularla y sentaron las bases para el espectacular desarrollo que iba a cambiar por completo la forma de vida del ser humano sobre el planeta Tierra.

Muchos fueron los que trabajaron para conseguir esta revolución. Desde que Tales de Mileto (en el siglo VI antes de nuestra era) descubrió la propiedad que tiene el ámbar de atraer objetos ligeros cuando se le frota (como pequeños trozos de corcho), hubo que esperar muchos años para que el físico inglés William Gilbert (en el siglo XVI de nuestra era) encontrara la misma propiedad en otros elementos (como el azufre, el vidrio y el lacre), dando así comienzo a los primeros conocimientos sobre la electricidad (palabra derivada del nombre griego para ámbar "electro"). Desde entonces, muchos han sido los nombres que se han hecho famosos por sus descubrimientos sobre esta materia. Así tenemos a Charles de Coulomb, Georg Simon Ohm, James Prescott Joule, Michael Faraday, Hans Christian Oersted (descubridor del electromagnetismo), James Clerk Maxwell (autor de la teoría electromagnética de la luz), Alessandro Volta (inventor de la pila que lleva su nombre, perfeccionada mas tarde por Georges Leclanché), Alexander Graham Bell (inventor del teléfono) y tantos otros nombres que llenarían varias páginas como esta.

Pero inevitablemente, al hablar de electrónica, nos resulta imposible dejar de hacerlo sin mencionar a tres de los mayores genios que ayudaron a dar a luz a esta ciencia: El físico alemán Heinrich Hertz (1857-1894) quién demostró que la electricidad puede transmitirse en forma de ondas electromagnéticas, las cuales se propagan a la velocidad de la luz y tienen además muchas de sus propiedades. Sus experimentos con estas ondas le condujeron al descubrimiento del telégrafo y la radio sin cables. La unidad de frecuencia se denominó hercio en su honor; su símbolo es Hz.

El norteamericano Thomas Alva Edison (1847-1931) patentó más de mil inventos entre los que destaca la lámpara de incandescencia. Además, Edison observó en 1883 la emisión de electrones por un filamento caliente (el llamado efecto Edison o termoiónico), cuyas implicaciones profundas no se comprendieron hasta varios años más tarde.

Por último, debemos rendir tributo al ya mencionado Guglielmo Marconi (1874-1937), inventor del primer sistema práctico de señales de radio y premio Nobel de física en 1909 como reconocimiento a su trabajo.

En 1904, el físico británico John Ambrose Fleming inventó el tubo de vacío de dos electrodos, dando comienzo así al periodo en que dominaron las válvulas electrónicas de vacio (o termoiónicas), aunque este componente no se hizo realidad hasta 1906, cuando el estadounidense Lee de Forest (1873-1961) introdujo un tercer elemento regulador llamado "rejilla", inventando de esta manera la llamada válvula "triodo". El triodo se convirtió en una pieza clave de prácticamente todas las radios, radares, televisiones y sistemas de ordenadores o computadoras, hasta que el transistor comenzó a reemplazar a los tubos de vacío, al principio de la década de 1950.

Se comienzan a sustituir los receptores de galena, que detectan las señales electromagnéticas por medio de cristales sin utilizar mas energía que la propia señal lanzada por las emisoras de radio. Comienza una nueva era. En menos de cien años se produce una carrera galopante de descubrimientos e invenciones de todo tipo que conduce al desarrollo de la electrónica actual. Es una carrera fabulosa que transforma el mundo. A partír de aquí surgen inventos como el transistor, la televisión, el radar o radiolocalización, el microscopio electrónico, los rayos X, grabación de audio y video en cinta magnética, los circuitos integrados, el teléfono móvil, el DVD, los mini-ordenadores y micro-ordenadores y... ¡¡ porqué no !!... el correo electrónico e Internet (los cuales no hubieran existido jamás sin la maravillosa colaboración de la electrónica).

Quién sabe lo que nos depara el futuro con respecto a esta ciencia. Se siguen inventando cosas en base a ella a una velocidad tal que para muchos es imposible seguir el ritmo. Es más, estamos convencidos, estimado lector, que si nos pusiéramos en contacto con uno de estos grandes investigadores que en modernos laboratorios dedican su vida y sus conocimientos al desarrollo de la electrónica y sus aplicaciones nos diría... "¡¡Pero si solo estamos empezando!!".

En la actualidad, y sin ningún género de dudas, existen una serie de invenciones que están a punto de saltar de los laboratorios de muchas de las empresas tecnológicas existentes en el mundo al gran público y que nos harán conocer otras maravillas que, a decir verdad, ya no nos sorprenden tanto debido a la avalancha que desde hace unos años se nos ha venido encima, avalancha que, como ya hemos comentado, para muchos es imposible de asimilar. Sin embargo, todo ello está relacionado con la electrónica y gran parte de todos esos inventos habidos y por haber tienen que ver con la radio. Por lo tanto, a pesar de que hoy dia nadie se sorprende al ver en funcionamiento estos grandes inventos, son muchos los que desconocen la esencia, lo básico del asunto.

Por este motivo, estamos seguros de que a muchas personas les interesará conocer, aunque solo sea para saciar su propia curiosidad, el proceso que hay detrás de una corriente eléctrica y su aplicación a la electrónica y la radio. ¿Como se realiza el proceso de "conversión" del sonido en una emisora de radiodifusión hasta conseguir radiarlo al espacio en forma de energia electromagnética de alta frecuencia? ¿Que ocurre luego en el interior de un receptor de radio? ¿Cual es y como se lleva a cabo el proceso que permite "restaurar" el sonido por medio del altavoz, después de haber viajado miles de kilómetros? ¿Cuales son los bloques que conforman un receptor de radio y que es lo hace cada uno de ellos?

Para dar respuesta a estas preguntas, primero deberíamos de tratar de responder otras, las cuales son la base para entender las anteriores. ¿Que es la corriente eléctrica? ¿Que es y que función tienen los condensadores? ¿Para que sirven las resistencias? ¿Como funcionan las válvulas de vacio, aún utilizadas hoy dia por determinados equipos electrónicos? ¿Que es exactamente el efecto transistor? ¿Que es un oscilador? ¿Como funciona un receptor a reacción, muy utilizados hace años por los radioaficionados? ¿Que es y cual es el principio del superheterodino? ¿Que significan las siglas FI, RF, BF, SSB, CAG, CAS...? ¿Como puede funcionar un receptor de radio tipo "galena" sin pilas ni corriente?. Todo esto y mucho más lo encontrarás en los artículos que siguen. No deje de visitarnos para ir al paso con todo lo publicado. No se quede atrás.

Esto es en síntesis lo que te proponemos. Adentrarte en este fascinante mundo a través de www.radioelectronica.es, la web que acaba de nacer. Contamos con tu entusiasmo para poder llegar a buen fin. No va a costarte nada, recuerda que ... ¡¡ES GRATIS!!.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.