Acceso



Registro de usuarios
Contáctenos
Teoría
El magnetismo - Imanes

Todos sabemos lo que es un imán (no me refiero a ese señor que dirige la oración en el Islam). Está claro que el ser humano llegó a conocer el magnetismo gracias a los imanes, sin los cuales no sabemos en que estado estarian hoy en dia las cosas. Pero a pesar de que los imanes sean objetos tan conocidos por la mayoría podemos decir que también son grandes desconocidos... ¿que porqué?... pues porque conocemos de sobra los efectos que pueden llegar a producir y sin embargo no sabemos prácticamente nada de la causa por la que ocurren. Es decir, todos sabemos que un imán atrae a otros cuerpos metálicos de hierro y acero pero son pocos los que saben "como rayos lo hace". ¿Cual es la fuente de esa atracción tan llamativa?.

Imagina que eres el padre de Pedrito. Pedrito es un niño muy listo que un buen dia conoce la existencia de los imanes. Como Pedrito tiene muchas inquietudes comienza a investigar y en medio de esas investigaciones te asalta cuando llegas del trabajo y te pregunta... ¡¡Papi, papi...!! ¿Porqué los imanes se pegan al hierro?. Entonces tu vas y le respondes al niño... ¡Porque son magnéticos!. El niño no entiende nada y entonces pregunta otra vez... ¿Y que significa ser magnético?... Te quedas algo confuso con la pregunta pero respondes... ¡¡Pues que tienen magnetita!!. El niño te mira con algo de recelo, y un poco mosca de nuevo te pregunta... ¿Y porqué la magnetita se pega al hierro?. Tu ya casi no sabes que responder y le dices... ¡Por la fuerza magnética que tiene!. El niño, muy serio, se queda ahora mirándote sin parpadear, como si se oliera que no tienes ni idea, y te hace la pregunta definitiva... ¿Y como funciona esa fuerza magnética para hacer que el imán se quede pegado al hierro?... Mejor que leas este artículo antes de seguir contestándole al niño.

Leer más...
Otros Temas Interesantes
Noticias
AFHA - Curso Electrónica, Radio y TV - Tomo 5

Tomo 5 del curso de Electrónica, Radio y Televisión de AFHA.

En este quinto tomo se habla del sistema de recepción por excelencia, el superheterodino de AM, condensadores, bobinas, circuitos resonantes, amplificadores selectivos, amplificadores en cascada, receptor de radiofrecuencia sintonizada, heterodinaje y modulación, osciladores, paso conversor, frecuencia imagen, amplificador de F.I., control automático de sensibilidad, etc...

Leer más...
Radioaficionados
Medidor de campo para Banda Ciudadana (27 MHz)

Justo hace ahora cuatro años publicamos en nuestro blog un artículo titulado "Medidor de campo sencillo". Se trataba de un pequeño dispositivo con el que podíamos evaluar el nivel de un campo electromagnético de una amplia gama de frecuencias, al usarse un diseño aperiódico exento de circuitos de sintonía.

Debido en parte a esta última particularidad, la sensibilidad del aparato no era precisamente una de sus mejores características aunque, eso si, cumplía perfectamente su cometido y permitía el ajuste de una gran diversidad de equipos transmisores. No obstante, en algunos casos se echaba de menos la mencionada falta de sensibilidad.

En este artículo os presentamos otro modelo de medidor de campo, en esta ocasión para la Banda Ciudadana (27 MHz), aunque mediante un ligero ajuste puede usarse entre 26 y 30 MHz. Su sensibilidad es bastante superior a la del primero.

Además tiene la posibilidad de poder usarse en otras gamas de frecuencia mediante el intercambio de la bobina de sintonía. ¿Te interesa?.

Leer más...
Miscelanea
La circunferencia, el círculo y el número PI (π)

La mayor parte de las personas que vivimos en paises desarrollados, quizás porque estamos acostumbrados a obtenerlo todo con suma facilidad y/o que las cosas vengan a nosotros como caídas del cielo, a menudo las damos por sentadas de manera automática.

Practicamente en ningún momento nos preguntamos porqué algo es o se produce de una determinada manera. Nos basta con saber que tal o cual cosa es como es y punto, lo aceptamos sin reservas.

Algo así nos ha ocurrido a muchos cuando asistíamos a la escuela, en épocas pasadas. ¿Recuerdas cuando aprendiste la fórmula para hallar la longitud de la circunferencia?. ¿O cuando te enseñaron la fórmula para calcular la superficie del círculo?. Todos las aceptamos sin pestañear, y pocos fuimos los que nos preguntamos de donde habia salido el famoso número PI (π). Muchos daban por sentado que aquello era así porque lo decía nuestro profesor de matemáticas y se acabó.

Pero en realidad, esas conocidas fórmulas han salido de algún sitio o, mejor dicho, han sido promulgadas por una o varias personas después de haber dedicado mucho tiempo y esfuerzo al estudio de estas figuras geométricas.

¿Te gustaría saber más sobre este tema y conocer como se han llegado a obtener las mencionadas fórmulas y como están relacionadas entre ellas?... ¡Pues clica en "Leer completo..." ya!.

Leer más...
Práctica
Cálculo de circuitos con diodos LED

Casi todo el mundo sabe de que se trata cuando se habla de diodos LED, esos pequeños componentes electrónicos que tienen la facultad de iluminarse cuando son atravesados por una corriente eléctrica. Además de que algunos modelos pueden llegar a desarrollar un considerable nivel lumínico el gasto energético que ocasionan es muy pequeño, por lo que en la actualidad ya han aparecido infinidad de lámparas domésticas basadas en ellos para casi todo tipo de aplicaciones.

Sin embargo, y centrándonos en los diodos LED estándar de 3 y de 5 milímetros usados en electrónica, muchos son los que se preguntan como se conectan a una pila o a una fuente de alimentación, quizás para usarlo como testigo de funcionamiento de algún equipo, o para hacer algún trabajo manual del colegio.

Hemos oido comentarios de todo tipo al respecto. Algunos dicen que el LED se conecta a la pila sin más, ya que piensan que funcionan con un determinado voltaje, algo parecido a las lamparitas de las linternas. Otros piensan que hay que poner dos o tres diodos más en serie, porque de lo contrario pueden "fundirse". Algunos no concretan y dicen que además del diodo LED y la pila o batería, el circuito debe de incorporar algún otro componente que lo proteja. ¿Que crees tu?.

El presente artículo tratará de arrojar luz sobre este tema, el cual en muchas ocasiones no está claro en la mente de algunos.

Leer más...
Teoría
Las válvulas de vacío III

Para continuar con los artículos relativos a las válvulas de vacío, iniciaremos este último hablando sobre un par de aplicaciones que en su dia tuvieron los diodos termoiónicos, aplicaciones relacionadas por supuesto con la radio.

Posteriormente, en el siguiente artículo, continuaremos repasando un poco el principio físico por el que se rige el funcionamiento de otra válvula termoiónica, el triodo, para acabar mencionando el protagonismo que años atrás tuvieron algunas otras válvulas de más electrodos.

Artículos cortos particularmente desde nuestro punto de vista, no en extensión pero sí en desarrollo, ya que existe mucha tela que cortar en este aspecto. Sin embargo, los reduciremos a la mínima expresión posible dada la actual inexistencia de circuitería práctica que incluya este tipo de componentes electrónicos. Pasa dentro, por favor ...

Leer más...
Noticias
Curso de ELECTRÓNICA BÁSICA 07

La LEY DE OHM como nunca te la han explicado

Si se te olvida con facilidad algunas de las tres fórmulas relativas a la Ley de Ohm debes ver este video. Una vez que lo hayas hecho, ya no las olvidarás jamás.

¿Por qué hacemos esta afirmación tan tajante?. Muy sencillo. Porque este video es completamente distinto a todo lo publicado hasta ahora y no se limita a escribir las fórmulas sin más, sino que se explican.

Tendrás que leer esta noticia completamente y posteriormente ver el video para entender por qué decimos esto con tanta seguridad. ¡Adelante!... Pasa dentro...

Leer más...

Los condensadores III

Afrontamos ahora el estudio de los condensadores en montaje paralelo. Como apuntamos en el artículo anterior, ya hemos tocado el tema del montaje de condensadores en paralelo cuando hablamos de los condensadores variables, en el séptimo artículo dedicado al receptor elemental. No obstante, si quieres conocer a fondo esta configuración de montaje, es muy conveniente que leas el artículo que sigue, en el cual se van a despejar algunas incógnitas que de seguro tienes en mente sobre ello.

¿Como se distribuye la carga individual de cada condensador en este tipo de montaje? ¿Pasará lo mismo que en el montaje serie que estudiamos en el artículo anterior, en el que la carga de cada condensador era idéntica?.

Que ocurrirá con la d.d.p. que acumula cada uno de estos componentes al estar montados con este tipo de configuración... ¿serán también diferentes en cada condensador, o por contra en este caso serán iguales?

Si quieres conocer las respuestas a estas y más preguntas, tienes ahora la oportunidad con solo seguir leyendo este artículo.

Si hemos leído los artículos anteriores relativos a este tema, podemos decir que ya sabemos mucho sobre condensadores, quizás más de lo que la mayoría de personas creen saber sobre ellos. Sin embargo sería interesante que no interrumpieras el estudio aquí y que finalizaras la lectura de este artículo, sobre todo porque al final te llevarás una grata sorpresa.

Cuando montamos dos o más condensadores en paralelo, sus capacidades se suman. Esto ya lo adelantamos en un artículo anterior. Puedes ver el dibujo adjunto para darte cuenta de ello.

Si suponemos que tenemos dos condensadores de placas planas en paralelo, el efecto es el mismo que si tuviéramos un solo condensador con una superficie de placas que fuera la suma de los dos anteriores, con lo que la capacidad total también sería la suma de las dos capacidades individuales.

Como es de suponer, al estar ambos condensadores directamente conectados a los bornes de la batería, la d.d.p. a la que se cargan los dos componentes es idéntica, y esto ocurre aunque sus capacidades sean diferentes. En este último caso, si sus capacidades fueran diferentes, lo que también serían diferentes son las respectivas cargas (en culombios) acumuladas en sus placas. Por lo tanto, la carga de cada condensador depende de su capacidad. A mayor capacidad, un condensador será capaz de almacenar una carga también mayor para una misma tensión (V) aplicada. Ante dos condensadores en paralelo de igual capacidad, las cargas almacenadas serán también iguales en ambos.

Como puedes ver, esto es justamente lo contrario a lo que ocurre cuando los condensadores están conectados en serie. Entonces los parámetros que podían diferír entre sí eran sus respectivas d.d.p., mientras sus cargas permanecían idénticas aunque sus capacidades fueran diferentes. ¿Que tal si vemos todo lo anterior mediante las matemáticas? ¡Venga hombre..., que no será tan difícil!.

USANDO LAS MATEMÁTICAS
Para comenzar nuestros cálculos recordaremos las fórmulas que ya conocemos, mediante las cuales podemos obtener el valor de uno de los tres parámetros, conociendo previamente dos de ellos. La capacidad (C), la carga (Q) y la d.d.p. (V) son los tres parámetros de que hablamos.

Fíjate de nuevo en el dibujo de los dos condensadores en paralelo representado arriba. De la fórmula Q=C·V se deduce que si la d.d.p. (V) aplicada a cada condensador es la misma, como incuestionablemente podemos ver en el dibujo superior, la carga (Q) va a depender exclusivamente de la capacidad individual de cada condensador, por lo que podemos asegurar que las cargas respectivas de los dos condensadores de la ilustración de arriba son:

La carga total o equivalente (Qeq) la hallaríamos sumando las cargas individuales de cada condensador, o sea:

Sustituyendo en la fórmula anterior Q1 y Q2 tenemos:

Simplificando llegamos a la siguiente fórmula:

Y por último, al pasar V al primer término tenemos:

Si te fijas, lo que tenemos en el término de la izquierda es la fórmula de la capacidad del condensador equivalente y el término de la derecha nos está indicando que ésta es igual a la suma de las capacidades individuales de cada uno de los dos condensadores conectados al circuito. Lo verás mejor si sustituimos el primer término:

¡Fácil...! ¿No te parece?. Además, la fórmula anterior puede ampliarse para cualquier número de condensadores en paralelo:

La fórmula de arriba nos permite enunciar que la capacidad equivalente de una combinación en paralelo de cualquier número de condensadores es igual a la suma de las capacidades individuales de todos ellos. Además, esto nos indica que dicha capacidad equivalente siempre será superior a cualquiera de las individuales que forman el circuito.

Hasta aquí el artículo dedicado a los condensadores en paralelo. Pero no queremos acabar sin hacerte un pequeño examen de lo estudiado hasta ahora y, por supuesto, de entregarte la merecida recompensa si eres uno de los cincuenta afortunados. ¿Que te parece?. Mira la ilustración de abajo y sigue leyendo.

¿Serás capaz de calcular la capacidad equivalente del circuito mostrado arriba? Sabemos que si has leído los tres artículos publicados en nuestra web relativos a los condensadores no vas a tener ningún problema para darnos la respuesta acertada. Utiliza este enlace para hacernos llegar la solución que crees correcta. ¡Demuestra todo lo que estás aprendiendo con nosotros!.

Entre los acertantes, sortearemos cincuenta suscripciones individuales a nuestra web de un mes de duración con todas las ventajas que ello conlleva. La prueba estará abierta para todos aquellos que deseen participar. El plazo para enviar las respuestas expira el dia 30 de abril de 2012. No te olvides de indicar en tu mensaje un correo electrónico válido, ya que será ahí donde te haremos llegar los datos para que puedas ingresar como usuario en nuestra web.

Te animamos a participar en esta promoción. Es completamente gratis. Todo el equipo de Radioelectronica.es te deseamos mucha suerte. Recuerda... nos vemos de nuevo aquí, en Radioelectrónica.es... tu punto de encuentro.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +