Acceso



Registro de usuarios
Contáctenos
Teoría
Potencia y Energía

Como dijimos en el artículo anterior, el término potencia ya empezamos a relacionarlo con la electricidad y la electrónica. Nos resulta familiar porque lo hemos visto muchas veces cuando hemos leido algún manual sobre las caracteristicas de un equipo eléctrico o electrónico.

Para introducir otro concepto, el de energía, vamos a explicar que se entiende por potencia. Sin embargo en esta ocasión vamos a hacerlo desde un punto de vista aplicado a la mecánica y estableceremos una definición del término. De esta manera nos resultará fácil llegar hasta donde queremos... ¿Recuerdas que definimos la electricidad como una forma de energía? Pues esa es precisamente nuestra próxima meta, saber exactamente de que hablamos cuando lo hacemos de la energía eléctrica. Para ello vamos a empezar con un ejemplo muy simple. ¿Nos acompañas?.

Leer más...
Otros Temas Interesantes
Noticias
Revista 27 MHz - Fascículo 8

Fascículo Nº 8 de la revista "27 MHz" dedicada a la CB (Banda Ciudadana).

Leer más...
Radioaficionados
Indicador de fusible fundido

A todo buen radioaficionado que se precie le gusta llevar a cabo sus propios montajes electrónicos. A continuación vamos a presentar uno que creemos muy interesante para ellos, ya que nos va a avisar en caso de que el fusible de nuestro equipo se funda, cosa que cuando nos ocurre nos deja un poco desconcertados, sin saber muy bién en un principio que es lo que está pasando.

El circuito no es difícil de llevar a la práctica y está compuesto de muy pocos componentes, los cuales son de muy fácil localización y de bajo precio. Creemos que merece la pena construir este pequeño circuito. Nos servirá de práctica recreativa y también nos ayudará a familiarizarnos un poco con los diferentes componentes electrónicos.

Además, la información la complementamos con un video en el que se explica con todo lujo de detalles su funcionamiento, y mediante el cual vamos a poder ver en tiempo real como funciona el dispositivo. También tendrás toda la información necesaria para construirte tu mismo el aparatito (diseño del circuito impreso, distribución de componentes, etc...). Todo ello te lo podrás bajar de la zona de descargas. ¿Te apuntas?.

Leer más...
Miscelanea
Preamplificador para guitarra eléctrica

¿Te gusta tocar la guitarra eléctrica?. Es posible que hasta seas el afortunado poseedor de una de ellas. Sin embargo, quizás no tengas el equipo de sonido adecuado para oirla con la suficiente potencia y calidad.

Esto último lo decimos porque la mayoría de amplificadores y equipos de audio domésticos del mercado no disponen de una entrada convenientemente adaptada a las características del sonido entregado por este instrumento.

Efectivamente, es habitual encontrar en los amplificadores, e incluso en muchas mesas de mezcla, entradas tipo "AUX", "LINE", "CD", "TUNER" o "PHONO", pero pocos son los que tienen una entrada que indique "GUITAR".

Sabedores de esto, hemos pensado que a muchos de vosotros os interesaría fabricaros un pequeño preamplificador, de funcionamiento seguro y con una elevada calidad, que intercalado entre una entrada auxiliar y el mencionado instrumento os permitirá elevar la señal de este último y aplicarla entonces al equipo del que dispongáis para que el sonido en los altavoces tenga el nivel adecuado.

Os presentamos un circuito que con solo dos transistores BJT, seis resistencias y cinco condensadores os permitirá conseguir este objetivo.

¿Por qué no clicas en "Leer completo..." y compruebas la sencillez del dispositivo?.

Leer más...
Práctica
La soldadura

"Teoría sin práctica es parálisis y práctica sin teoría es ceguera". Con la primera parte de esta frase, cuya autoría desconocemos, podemos resaltar la importancia de que cualquier cosa que estudiemos siempre vaya acompañada de ejercicios prácticos. De nada en absoluto nos sirve estudiar muy a fondo cualquier rama del saber si luego somos incapaces de poner en práctica lo aprendido. ¿Cuantos inventos han podido no ver la luz si su inventor no hubiera llevado a la práctica la idea, basada en su conocimiento teórico, que tuvo en un momento determinado?.

La segunda parte de la frase es tan cierta como la primera y, por desgracia, se da con bastante más frecuencia que su compañera en la vida real. Cuantas veces hemos contratado a un "profesional" para que nos haga un trabajo y al final, cuando ha terminado, vemos "la chapuza" que nos entrega. ¡Cuanta razón tenía Leonardo Da Vinci cuando expresó lo siguiente!: "Los que se enamoran de la práctica sin la teoría son como pilotos sin timón ni brújula que nunca podrán saber a donde van". Esto nos confirma que "práctica sin teoría es ceguera".

Pues bién, todo ello trasladado a la radio y la electrónica tiene una importancia decisiva. Por lo tanto, vamos a practicar un poco con algo esencial para construir nuestros circuitos de forma apropiada. ¿Que tal si aprendemos a soldar correctamente?. ¿Te gusta la idea?

Leer más...
Teoría
Las ondas (V)

Llegamos al último artículo relativo a las ondas. A través de los cuatro artículos anteriores hemos visto más o menos profundamente su naturaleza. Con lo estudiado hasta el momento ya tenemos suficiente conocimiento para continuar adelante, sin embargo vamos a seguir hablando un poco a lo largo de este artículo sobre algunas de las peculiaridades especiales de las ondas y también de algunas de sus aplicaciones prácticas, lo que ampliará nuestro entendimiento sobre este tema tan interesante.

Además vamos a explicar el significado de algunas expresiones comunes en radio, que quizás antes de leer este artículo no tenías claras en tu mente y que sin embargo las oímos todos los dias. Es posible que te sorprenda lo que vas a leer a continuación, o quizás no, pero en cualquier caso vamos a intentar que la lectura sea amena, agradable y entretenida.

Cuando acabes de leer estas páginas puedes dejar tu comentario, si lo deseas, y decirnos que te ha parecido ¿te agrada la idea?. Pues adelante.

Leer más...
Noticias
Liberado artículo del regulador PWR para SS3900

Comunicamos a todos nuestros visitantes que, debido a la gran cantidad de mensajes recibidos con preguntas acerca de nuestro artículo sobre la instalación de un regulador de potencia (PWR) AM-FM para la Superstar 3900, nuestra administración ha decidido hacer dicho artículo de libre descarga y distribución, por lo que los visitantes suscritos a nuestro blog pueden descargarlo de este link.

Esperamos que con esto podamos ayudar a muchas de aquellas personas que nos han pedido detalles sobre este tema.

Leer más...

Las válvulas de vacío I

Por supuesto que somos conscientes de la fecha en que vivimos. Sabemos que la nanotecnología está invadiendo prácticamente todas las ramas de la ciencia, y la radio y la electrónica no son menos. Los adelantos relativos a esta faceta son más que evidentes por todos nosotros. Por ejemplo; la reducción en el tamaño de los "chips", el aumento constante de las capacidades de las memorias, el diseño de equipos electrónicos cada vez más pequeños y con más prestaciones, etc...

Por todo ello quizás te preguntes... ¿por qué venís ahora a hablarnos de algo tan "anticuado" como las válvulas de vacío?... ¿es que no hay temas más interesantes y actuales de los que escribir?...

Pues la verdad es que podíamos disertar sobre cuestiones relativas a descubrimientos mucho más actuales, pero no mucho más interesantes e incluso no excesivamente más aplicativos. Sobre todo teniendo en cuenta que el efecto termoiónico, fenómeno que acontece en el interior de las válvulas de vacío, es también el principio utilizado hoy dia en algunas aplicaciones eléctricas y electrónicas, e incluso en medicina. Además, en algunos de estos menesteres no se vislumbra aún un futuro cercano en el que pueda prescindirse de los servicios prestados por este fenómeno físico.

Por todo lo anterior, creemos que merecía la pena escribir unos artículos sobre este tema, orientando su aplicación principalmente, como es natural, a lo que esta web está dedicada, es decir, a la radio. ¿Nos acompañas?

Las etapas finales amplificadoras de R.F. de muchas de las emisoras comerciales de radio y televisión actuales están construidas con válvulas de vacío. Los Tubos de Ondas Progresivas (TWT) usados en los transpondedores de la mayoría de los satélites utilizan el efecto termoiónico. Además podríamos añadir los magnetrones usados en los radares, los aceleradores de partículas, sistemas de calentamiento industrial y hasta en los tubos fluorescentes domésticos (hasta que no sean sustituidos por los tubos de LED), usan el efecto termoiónico.

Es interesante resaltar que son muchos los estudiantes de electrónica actuales que acaban su formación sin haber oído hablar nunca de las válvulas termoiónicas, ignorando por completo tanto el principio físico que interviene en ellas como las aplicaciones en las que este fenómeno es utilizado.

Sin embargo, nosotros creemos que aún es necesario conocer, aunque sea de forma relativamente superficial, el fenómeno del efecto termoiónico y la que fué su aplicación principal, las válvulas de vacío.

IONIZACIÓN Y EFECTO TERMOIÓNICO
Si a un radioaficionado le hablas del efecto termoiónico enseguida lo relacionará con las válvulas de vacío, aunque como ya te hemos indicado, no es un fenómeno exclusivo de ese componente. Tenemos que resaltar como curiosidad que cuando Édison lo descubrió, lo hizo en una ampolla de vidrio con unos electrodos en su interior, tratando de adivinar por qué los filamentos de sus bombillas se quebraban con tanta facilidad. Pero... ¿a que llamamos efecto termiónico?.

El efecto termoiónico es la formación de iones en un metal cuando se le aplica calor y se le sube la temperatura a un nivel determinado. ¿Que no has entendido nada?. Te lo explicamos paso a paso a continuación.

Lo primero es tener conciencia de lo que es un ion, además de saber que es una palabra de tres letras. ¿Recuerdas cuando estudiamos la teoría electrónica de la materia?. Si no has leído aquel artículo te sugerimos que lo hagas ahora, antes de continuar con este. Pues bien, llamamos ion al átomo que por alguna causa ha dejado de ser eléctricamente neutro, es decir, que tiene más protones en su núcleo que electrones girando a su alrededor, o viceversa. ¡Fácil! ¡no?. Aclarémonos un poco más.

Debemos de recordar que los núcleos atómicos, compuestos por protones y neutrones, son partículas que permanecen fijas, como puntos inmóviles en el espacio, formando una especie de estructura estática. Por entre los "petrificados" núcleos atómicos se desplaza una determinada cantidad de electrones libres que han escapado de la última orbita de algunos de los átomos del material en cuestión. Es esto último lo que hace de ese material un buen conductor, su número de electrones libres. Pero lógicamente, si en el material existen electrones libres también deben existir átomos con defecto de electrones. ¡¡Esos son los iones!!.

Efectivamente, a aquellos átomos a los que les faltan electrones, y por lo tanto en su conjunto son átomos con carga eléctrica positiva, los llamamos IONES. En consecuencia, hablaremos de IONIZACIÓN de un determinado material cuando consigamos que en su estructura atómica aparezcan átomos con carga eléctrica, sea esta positiva o negativa. Cuando la ionización está provocada por el calentamiento de ese material, entonces estamos en presencia de lo que llamamos EFECTO TERMOIÓNICO. ¿Te ha quedado claro?.

IONIZACIÓN POR CALOR
La ionización puede conseguirse por diferentes métodos, y no solo por el aumento de la temperatura del metal en cuestión. También puede ionizarse un cuerpo por exposición a los rayos ultravioletas, a los rayos X, a fuertes campos magnéticos y/o eléctricos, por bombardeo de electrones, etc... La cuestión es aplicarle al metal algún tipo de energía que haga que los electrones adquieran la velocidad suficiente para que abandonen la superficie del cuerpo al que pertenecen. No obstante, el sistema que más nos interesa en estos momentos es la aplicación de altas temperaturas.

A temperatura ambiente, los electrones libres de un metal se mueven entre la estructura estática de núcleos atómicos de forma caótica, sin una dirección determinada, chocando contínuamente con los iones y cambiando constantemente el sentido de su movimiento. Estos choques se producen de forma reiterada debido a que los electrones libres se sienten atraidos por los iones positivos, los cuales tratan de captarlos a toda costa para conseguir un estado estable, y neutralizar su carga positiva.

Debido precisamente a esa atracción ejercida por los iones, los electrones no logran escapar del metal. Efectivamente, en el momento que algún electrón se separa a cierta distancia del espacio que ocupan los inmóviles núcleos de los átomos ionizados, estos ejercen su influencia sobre aquel desviando su trayectoria, de manera que ese electrón vuelve a formar parte del torrente de electrones libres existente en el interior del metal. Esto es lo que sucede cuando el metal se encuentra a temperatura ambiente. Pero... ¿y si lo calentamos a un nivel bastante alto?.

Conforme vamos calentando el metal, los electrones libres van adquiriendo más velocidad. Su movimiento se vuelve violento, y esta violencia aumenta a medida que aumenta la temperatura. Llega un momento en que algunos de aquellos electrones que casi logran escapar de la estructura metalica a temperatura ambiente por estar muy cercanos a su superficie adquieren tal velocidad, que la fuerza de atracción que ejercen los iones sobre ellos ya no es lo suficientemente fuerte para retenerlos y abandonan el metal del que formaban parte, saliendo despedidos de él.

Como consecuencia de esta pérdida de electrones, el metal como conjunto queda con carga eléctrica positiva. Eso es obvio, ya que por cada electrón fugado existe en el metal un ion positivo sin que tenga su correspondiente carga negativa dentro de la estructura, que lo compense eléctricamente. Precisamente ahí es a donde queríamos llegar, porque ahora si que podemos entender perfectamente la deficinión que hicimos antes y que volvemos a repetir ahora; El efecto termoiónico es la formación de iones en un metal cuando a este se le sube la temperatura hasta un nivel determinado.

EL EFECTO JOULE
Como acabamos de ver, el efecto termoiónico se produce por el aumento de temperatura de una sustancia, generalmente un metal o un óxido metálico. Dicho de manera llana, se produce por calor. Es posible ionizar un metal calentandolo de cualquier forma conocida; con las brasas de una chimenea, con un soplete, con un mechero, etc... No obstante, para la aplicación que vamos a darle es mucho más adecuado calentar el metal de otra forma. ¿Te la imaginas?. La respuesta es mediante una corriente eléctrica ¿no crees que es lo más acertado en nuestro caso?.

El principio físico que se pone en práctica para lograr el calentamiento de un metal mediante una corriente eléctrica se llama EFECTO JOULE. Dice algo así: "Todo conductor a través del cual circula una corriente eléctrica experimenta una subida de temperatura debido a la resistencia que presenta".

Todos hemos visto el efecto Joule en acción y conocemos algunas aplicaciones en las que se utiliza. Por ejemplo en calentadores eléctricos y lámparas de incandescencia. En el primer caso tenemos un hilo conductor más o menos largo, y a veces con una forma parecida a una bobina, que se pone al rojo vivo y emite calor. En el segundo, tenemos también un hilo conductor especial bastante más corto que el anterior, el cual también se pone al rojo vivo y no solo emite luz, también calor.

Cuando un conductor se calienta debido al efecto Joule aparece en él al mismo tiempo una emisión de electrones. Podemos decir pues que, allí donde hay efecto Joule, en mayor o menor grado también existe efecto termoiónico.

La razón por la que se produce el efecto Joule nos resultará fácil de entender si pensamos en lo que ya hemos dicho sobre los choques de los electrones dentro de la estructura del metal. Sabemos que el rozamiento produce calor. Los electrones en movimiento poseen un tipo de energía llamada cinética, energía que tiene todo cuerpo que está en movimiento. Cuando un electrón choca violentamente contra un ion pierde parte de esa energía cinética y esta se convierte en calor. ¿Recordamos el enunciado de la ley de conservación de la energía?.

La velocidad de los electrones será directamente proporcional a la d.d.p. que le apliquemos al conductor. A más d.d.p. le corresponde una mayor velocidad de los electrones. Si la velocidad aumenta, los choques serán más numerosos y más violentos y por lo tanto se producirá más calor. Ese aumento de temperatura que experimenta el metal se debe a los miles de millones de choques que se producen entre los electrones libres y los iones estáticos. A este fenómeno físico se le conoce como efecto Joule.

Ya tenemos la base para continuar con el estudio de las válvulas electrónicas de vacío. En el próximo artículo hablaremos de lleno sobre ellas, comenzando por la válvula diodo. No faltes a la cita.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.