Acceso



Registro de usuarios
Contáctenos
Teoría
Las válvulas de vacío VIII

Llegamos al artículo número ocho y último dedicado a las válvulas de vacío. Estudiaremos en él dos de las más usadas en su dia, junto con el triodo. Nos referimos al tetrodo y al pentodo termoiónicos.

Aunque existían válvulas de más electrodos, las mismas eran utilizadas principalmente en montajes muy específicos y particulares, por lo que creemos que con los dos tipos mencionados cumplimos ampliamente con nuestro objetivo de dar a conocer superficialmente estos antiguos componentes electrónicos.

Además, en la actualidad aún se siguen empleando tanto triodos como pentodos en ciertas aplicaciones, por ejemplo en determinados amplificadores lineales de RF. Incluso hemos podido ver algunos amplificadores de audio actuales fabricados con estos componentes ya que, según la opinión de muchos expertos en sonido, la calidad, fidelidad y limpieza que se obtiene mediante tubos de vacío es superior a la conseguida mediante el uso de semiconductores.

Sin embargo, el resto de válvulas de más electrodos han caido en completo desuso, a excepción de las que montan los receptores que se fabricaron por aquellos años y que aún continúan funcionando en la actualidad, por lo que no serviría de gran cosa escribir un artículo dedicado a ellas.

Leer más...
Otros Temas Interesantes
Noticias
Conserva todos nuestros artículos en PDF

¿Te gustaría conservar todos nuestros artículos en PDF y leerlos tranquilamente en tu ordenador o en tu tablet sin necesidad de conectarte a nuestro blog, poder imprimirlos e incluso compilarte y elegir tu mismo la información técnica que más te interese?

Si es así entonces estás de suerte, ya que es sumamente sencillo conseguirlos desde nuestro blog.

Pero posiblemente te preguntes que para que quieres nuestros artículos en PDF si ya los tienes en el monitor de tu ordenador, simplemente visitandonos.

A continuación te vamos a dar unos cuantos argumentos y razones por las que posiblemente cambies de opinión, y además vamos a mostrarte un ejemplo gráfico que creemos bastante interesante. Síguenos...

Leer más...
Radioaficionados
Como mejorar el receptor de galena

Como continuación al artículo relativo al receptor con diodo de cristal o radio galena, presentamos la siguiente información en la que explicamos como mejorar dicho receptor de radio. No en vano, las mejoras introducidas conseguirán un mayor rendimiento de sus características.

Comenzaremos con una pequeña modificación de nuestro receptor original, añadiendole un transistor para obtener una pequeña amplificación de señal.

Lo verdaderamente interesante, sin embargo, es que a pesar de usar un componente activo, en un principio seguiremos usando solo la energía recibida por la antena, es decir, no usaremos ninguna bateria, pila ni fuente de alimentación.

Posteriormente, en este mismo artículo, estudiaremos otros circuitos a los que iremos dotando de mayor amplificación y a los cuales añadiremos ya una pequeña pila, con lo que el rendimiento obtenido será mayor y tanto su sensibilidad como su selectividad se verán ostensiblemente incrementadas con respecto a las ofrecidas por receptores anteriores.

Si verdaderamente te interesa la radio no puedes dejar de leer este apasionante artículo.

Leer más...
Miscelanea
La circunferencia, el círculo y el número PI (π)

La mayor parte de las personas que vivimos en paises desarrollados, quizás porque estamos acostumbrados a obtenerlo todo con suma facilidad y/o que las cosas vengan a nosotros como caídas del cielo, a menudo las damos por sentadas de manera automática.

Practicamente en ningún momento nos preguntamos porqué algo es o se produce de una determinada manera. Nos basta con saber que tal o cual cosa es como es y punto, lo aceptamos sin reservas.

Algo así nos ha ocurrido a muchos cuando asistíamos a la escuela, en épocas pasadas. ¿Recuerdas cuando aprendiste la fórmula para hallar la longitud de la circunferencia?. ¿O cuando te enseñaron la fórmula para calcular la superficie del círculo?. Todos las aceptamos sin pestañear, y pocos fuimos los que nos preguntamos de donde habia salido el famoso número PI (π). Muchos daban por sentado que aquello era así porque lo decía nuestro profesor de matemáticas y se acabó.

Pero en realidad, esas conocidas fórmulas han salido de algún sitio o, mejor dicho, han sido promulgadas por una o varias personas después de haber dedicado mucho tiempo y esfuerzo al estudio de estas figuras geométricas.

¿Te gustaría saber más sobre este tema y conocer como se han llegado a obtener las mencionadas fórmulas y como están relacionadas entre ellas?... ¡Pues clica en "Leer completo..." ya!.

Leer más...
Práctica
El electroscopio

Llegó la hora de realizar nuestra primera práctica electrónica. Una vez que hemos estudiado la electricidad estática estaría bien ver los efectos que produce esta mediante un artilugio construido por nosotros mismos.

En este artículo vamos a explicar que es un electroscopio y además vamos a fabricar uno con materiales muy comunes a practicamente costo cero. Siendo un instrumento sumamente fácil y económico de construir, con él podremos ver los efectos de la electricidad estática estudiados en el artículo anterior.

William Gilbert (1544-1603), médico y físico inglés, fué la persona que construyó por primera vez un electroscopio para realizar experimentos con cargas electrostáticas. Acérrimo defensor de la teoría copernicana, sus mayores aportaciones a la ciencia tratan sobre electricidad y magnetismo. Al mostrar que el hierro a altas temperaturas (al rojo) no presenta alteraciones magnéticas, se adelantó a los modernos descubrimientos de Curie. Aunque actualmente el instrumento inventado por Gilbert no es más que una pieza de museo, existiendo herramientas muchísimo mas modernas para estos menesteres, resulta muy instructiva su construcción. Prepárate pués para empezar a experimentar con la electricidad estática.

Leer más...
Teoría
Fuerza y trabajo

Para todo en la vida se requiere esfuerzo y el aprendizaje de la electrónica y la radio no son una excepción. Para comenzar a estudiar esta ciencia se requieren ciertos conocimientos básicos sin los cuales resulta imposible comprender la gran cantidad de fenómenos que se producen en el interior de un equipo de radio, y conseguir que el sonido recogido en el centro emisor (que puede estar a miles de kilómetros) pueda recibirse con asombrosa nitidez en nuestros receptores. Pero no te desanimes... vamos a explicartelo de una forma muy sencilla... ¡Vayamos por partes!.

Para comenzar utilicemos nuestro sentido común (si, es un tópico pero es cierto... el menos común de los sentidos). Para que un receptor de radio funcione ¿que necesita de forma imperiosa?... La electricidad... ¡Muy bién!. Eres muy listo. Seguro que antes de leerlo ya lo habías adivinado. Es la electricidad la que hace posible el proceso de transformación del sonido en ondas electromagnéticas en la emisora y posteriormente convertir estas señales de nuevo en algo audible y entendible por el ser humano en el receptor de radio. Por lo tanto, no se puede concebir que estemos tratando temas de electrónica y radio sin dedicar algunas palabras al estudio de la electricidad como base para poder asimilar los conocimientos subsiguientes.

Leer más...
Noticias
Revista 27 MHz - Fascículo 11

Fascículo Nº 11 de la revista "27 MHz" dedicada a la CB (Banda Ciudadana).

Leer más...

Las válvulas de vacío I

Por supuesto que somos conscientes de la fecha en que vivimos. Sabemos que la nanotecnología está invadiendo prácticamente todas las ramas de la ciencia, y la radio y la electrónica no son menos. Los adelantos relativos a esta faceta son más que evidentes por todos nosotros. Por ejemplo; la reducción en el tamaño de los "chips", el aumento constante de las capacidades de las memorias, el diseño de equipos electrónicos cada vez más pequeños y con más prestaciones, etc...

Por todo ello quizás te preguntes... ¿por qué venís ahora a hablarnos de algo tan "anticuado" como las válvulas de vacío?... ¿es que no hay temas más interesantes y actuales de los que escribir?...

Pues la verdad es que podíamos disertar sobre cuestiones relativas a descubrimientos mucho más actuales, pero no mucho más interesantes e incluso no excesivamente más aplicativos. Sobre todo teniendo en cuenta que el efecto termoiónico, fenómeno que acontece en el interior de las válvulas de vacío, es también el principio utilizado hoy dia en algunas aplicaciones eléctricas y electrónicas, e incluso en medicina. Además, en algunos de estos menesteres no se vislumbra aún un futuro cercano en el que pueda prescindirse de los servicios prestados por este fenómeno físico.

Por todo lo anterior, creemos que merecía la pena escribir unos artículos sobre este tema, orientando su aplicación principalmente, como es natural, a lo que esta web está dedicada, es decir, a la radio. ¿Nos acompañas?

Las etapas finales amplificadoras de R.F. de muchas de las emisoras comerciales de radio y televisión actuales están construidas con válvulas de vacío. Los Tubos de Ondas Progresivas (TWT) usados en los transpondedores de la mayoría de los satélites utilizan el efecto termoiónico. Además podríamos añadir los magnetrones usados en los radares, los aceleradores de partículas, sistemas de calentamiento industrial y hasta en los tubos fluorescentes domésticos (hasta que no sean sustituidos por los tubos de LED), usan el efecto termoiónico.

Es interesante resaltar que son muchos los estudiantes de electrónica actuales que acaban su formación sin haber oído hablar nunca de las válvulas termoiónicas, ignorando por completo tanto el principio físico que interviene en ellas como las aplicaciones en las que este fenómeno es utilizado.

Sin embargo, nosotros creemos que aún es necesario conocer, aunque sea de forma relativamente superficial, el fenómeno del efecto termoiónico y la que fué su aplicación principal, las válvulas de vacío.

IONIZACIÓN Y EFECTO TERMOIÓNICO
Si a un radioaficionado le hablas del efecto termoiónico enseguida lo relacionará con las válvulas de vacío, aunque como ya te hemos indicado, no es un fenómeno exclusivo de ese componente. Tenemos que resaltar como curiosidad que cuando Édison lo descubrió, lo hizo en una ampolla de vidrio con unos electrodos en su interior, tratando de adivinar por qué los filamentos de sus bombillas se quebraban con tanta facilidad. Pero... ¿a que llamamos efecto termiónico?.

El efecto termoiónico es la formación de iones en un metal cuando se le aplica calor y se le sube la temperatura a un nivel determinado. ¿Que no has entendido nada?. Te lo explicamos paso a paso a continuación.

Lo primero es tener conciencia de lo que es un ion, además de saber que es una palabra de tres letras. ¿Recuerdas cuando estudiamos la teoría electrónica de la materia?. Si no has leído aquel artículo te sugerimos que lo hagas ahora, antes de continuar con este. Pues bien, llamamos ion al átomo que por alguna causa ha dejado de ser eléctricamente neutro, es decir, que tiene más protones en su núcleo que electrones girando a su alrededor, o viceversa. ¡Fácil! ¡no?. Aclarémonos un poco más.

Debemos de recordar que los núcleos atómicos, compuestos por protones y neutrones, son partículas que permanecen fijas, como puntos inmóviles en el espacio, formando una especie de estructura estática. Por entre los "petrificados" núcleos atómicos se desplaza una determinada cantidad de electrones libres que han escapado de la última orbita de algunos de los átomos del material en cuestión. Es esto último lo que hace de ese material un buen conductor, su número de electrones libres. Pero lógicamente, si en el material existen electrones libres también deben existir átomos con defecto de electrones. ¡¡Esos son los iones!!.

Efectivamente, a aquellos átomos a los que les faltan electrones, y por lo tanto en su conjunto son átomos con carga eléctrica positiva, los llamamos IONES. En consecuencia, hablaremos de IONIZACIÓN de un determinado material cuando consigamos que en su estructura atómica aparezcan átomos con carga eléctrica, sea esta positiva o negativa. Cuando la ionización está provocada por el calentamiento de ese material, entonces estamos en presencia de lo que llamamos EFECTO TERMOIÓNICO. ¿Te ha quedado claro?.

IONIZACIÓN POR CALOR
La ionización puede conseguirse por diferentes métodos, y no solo por el aumento de la temperatura del metal en cuestión. También puede ionizarse un cuerpo por exposición a los rayos ultravioletas, a los rayos X, a fuertes campos magnéticos y/o eléctricos, por bombardeo de electrones, etc... La cuestión es aplicarle al metal algún tipo de energía que haga que los electrones adquieran la velocidad suficiente para que abandonen la superficie del cuerpo al que pertenecen. No obstante, el sistema que más nos interesa en estos momentos es la aplicación de altas temperaturas.

A temperatura ambiente, los electrones libres de un metal se mueven entre la estructura estática de núcleos atómicos de forma caótica, sin una dirección determinada, chocando contínuamente con los iones y cambiando constantemente el sentido de su movimiento. Estos choques se producen de forma reiterada debido a que los electrones libres se sienten atraidos por los iones positivos, los cuales tratan de captarlos a toda costa para conseguir un estado estable, y neutralizar su carga positiva.

Debido precisamente a esa atracción ejercida por los iones, los electrones no logran escapar del metal. Efectivamente, en el momento que algún electrón se separa a cierta distancia del espacio que ocupan los inmóviles núcleos de los átomos ionizados, estos ejercen su influencia sobre aquel desviando su trayectoria, de manera que ese electrón vuelve a formar parte del torrente de electrones libres existente en el interior del metal. Esto es lo que sucede cuando el metal se encuentra a temperatura ambiente. Pero... ¿y si lo calentamos a un nivel bastante alto?.

Conforme vamos calentando el metal, los electrones libres van adquiriendo más velocidad. Su movimiento se vuelve violento, y esta violencia aumenta a medida que aumenta la temperatura. Llega un momento en que algunos de aquellos electrones que casi logran escapar de la estructura metalica a temperatura ambiente por estar muy cercanos a su superficie adquieren tal velocidad, que la fuerza de atracción que ejercen los iones sobre ellos ya no es lo suficientemente fuerte para retenerlos y abandonan el metal del que formaban parte, saliendo despedidos de él.

Como consecuencia de esta pérdida de electrones, el metal como conjunto queda con carga eléctrica positiva. Eso es obvio, ya que por cada electrón fugado existe en el metal un ion positivo sin que tenga su correspondiente carga negativa dentro de la estructura, que lo compense eléctricamente. Precisamente ahí es a donde queríamos llegar, porque ahora si que podemos entender perfectamente la deficinión que hicimos antes y que volvemos a repetir ahora; El efecto termoiónico es la formación de iones en un metal cuando a este se le sube la temperatura hasta un nivel determinado.

EL EFECTO JOULE
Como acabamos de ver, el efecto termoiónico se produce por el aumento de temperatura de una sustancia, generalmente un metal o un óxido metálico. Dicho de manera llana, se produce por calor. Es posible ionizar un metal calentandolo de cualquier forma conocida; con las brasas de una chimenea, con un soplete, con un mechero, etc... No obstante, para la aplicación que vamos a darle es mucho más adecuado calentar el metal de otra forma. ¿Te la imaginas?. La respuesta es mediante una corriente eléctrica ¿no crees que es lo más acertado en nuestro caso?.

El principio físico que se pone en práctica para lograr el calentamiento de un metal mediante una corriente eléctrica se llama EFECTO JOULE. Dice algo así: "Todo conductor a través del cual circula una corriente eléctrica experimenta una subida de temperatura debido a la resistencia que presenta".

Todos hemos visto el efecto Joule en acción y conocemos algunas aplicaciones en las que se utiliza. Por ejemplo en calentadores eléctricos y lámparas de incandescencia. En el primer caso tenemos un hilo conductor más o menos largo, y a veces con una forma parecida a una bobina, que se pone al rojo vivo y emite calor. En el segundo, tenemos también un hilo conductor especial bastante más corto que el anterior, el cual también se pone al rojo vivo y no solo emite luz, también calor.

Cuando un conductor se calienta debido al efecto Joule aparece en él al mismo tiempo una emisión de electrones. Podemos decir pues que, allí donde hay efecto Joule, en mayor o menor grado también existe efecto termoiónico.

La razón por la que se produce el efecto Joule nos resultará fácil de entender si pensamos en lo que ya hemos dicho sobre los choques de los electrones dentro de la estructura del metal. Sabemos que el rozamiento produce calor. Los electrones en movimiento poseen un tipo de energía llamada cinética, energía que tiene todo cuerpo que está en movimiento. Cuando un electrón choca violentamente contra un ion pierde parte de esa energía cinética y esta se convierte en calor. ¿Recordamos el enunciado de la ley de conservación de la energía?.

La velocidad de los electrones será directamente proporcional a la d.d.p. que le apliquemos al conductor. A más d.d.p. le corresponde una mayor velocidad de los electrones. Si la velocidad aumenta, los choques serán más numerosos y más violentos y por lo tanto se producirá más calor. Ese aumento de temperatura que experimenta el metal se debe a los miles de millones de choques que se producen entre los electrones libres y los iones estáticos. A este fenómeno físico se le conoce como efecto Joule.

Ya tenemos la base para continuar con el estudio de las válvulas electrónicas de vacío. En el próximo artículo hablaremos de lleno sobre ellas, comenzando por la válvula diodo. No faltes a la cita.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +