Acceso



Registro de usuarios
Contáctenos
Teoría
El receptor elemental (VI)

Una vez que hemos visto qué es un condensador y cual es su funcionamiento tanto en circuitos de corriente continua como en circuitos de corriente alterna, pasamos a ver que papel juega este componente electrónico en el selector de frecuencias de nuestro receptor elemental.

Ya hemos mencionado que el selector de frecuencias de nuestro sencillo receptor lo forman dos componentes: una bobina y un condensador. A estas alturas conocemos ambos elementos y, básicamente y de forma aislada, sabemos como funcionan. Ahora nos toca profundizar un poco en el comportamiento de los mismos cuando se montan juntos, formando ambos el corazón del selector de frecuencias de nuestro receptor.

Es verdad que hemos comentado que lo que ocurre en este tipo de circuitos es algo un tanto complejo, pero esto no va a impedir que, mediante varios ejemplos y con algunas ilustraciones, conozcamos los efectos que se producen cuando bobina y condensador hacen su trabajo particular de seleccionar señales de R.F. en el receptor que estamos estudiando. ¿Te apetece seguir?.

Leer más...
Otros Temas Interesantes
Noticias
Revista 27 MHz - Fascículo 5

Fascículo Nº 5 de la revista "27 MHz" dedicada a la CB (Banda Ciudadana).

Extracto de su contenido: Legalización CB "27MHz", circuito generador de señal final de transmisión (roger-beep), silenciador CB, teoría de antenas, indicador de modulación, sistemas de modulación (1ª Parte), código Q, etc...

Leer más...
Radioaficionados
Oscilador de laboratorio hasta 200 MHz

Para un radioaficionado es importantísimo saber usar y manipular los circuitos resonantes. Conocer a que frecuencia oscila uno de estos circuitos es, la mayoría de las veces, uno de los problemas mas habituales con los que tiene que enfrentarse el experimentador.

No obstante, en muchas ocasiones no se dispone del instrumental adecuado para realizar una medida de este tipo. Aunque es posible que dispongamos de un frecuencímetro, en la mayoría de las ocasiones no es suficiente, ya que es probable que no tengamos los medios para hacer oscilar al circuito tanque en cuestión.

Por esta razón, traemos a nuestro blog un pequeño dispositivo con el que podremos realizar esta medida con total seguridad y fiabilidad, además de ser útil para otros menesteres. Básicamente se trata de un oscilador al que únicamente le falta el circuito resonante objeto de nuestra medición. Dicho oscilador se acompaña de la circuitería necesaria para poder usarlo con nuestro frecuencímetro sin que el acoplamiento de este último afecte lo más mínimo a su frecuencia de resonancia. Y lo mejor de todo es que este circuito puede hacer oscilar "casi cualquier cosa que tenga espiras".

El montaje se lleva a cabo con solo seis transistores, uno de ellos el conocido JFET de canal "N" tipo BF-245, de muy fácil localización en el mercado, e incorpora técnicas para estabilizar la amplitud de la señal producida dentro de unos márgenes razonables, pudiendo llegar a oscilar hasta casi los 200 MHz.

Leer más...
Miscelanea
Tira a matar - Juego de reflejos

¿Con que rapidez responde tu cuerpo a los impulsos externos?. ¿Cuanto tiempo necesitarías para reaccionar ante un peligro inminente?. Si oyes un disparo cercano ¿tus reflejos te hacen "salirte del pellejo"?.

Para poner a prueba la rapidez de respuesta a tus estímulos nerviosos hemos ideado un pequeño circuito con el que podrás medirte en este aspecto con otra persona, y de paso cultivar la faceta "reflexológica" del ser humano. Se trata de algo así como un duelo, lógicamente sin pistolas y sin balas pero eso si, al ser del todo electrónico, con botones y con luces.

Una vez construido el dispositivo se dispondrán dos botones de mayor o menor tamaño, los cuales accionarán sendos pulsadores conectados a nuestro circuito. Al oir una señal, los dos participantes se apresurarán a pulsar su correspondiente botón.

El más rápido de los dos se llevará el gato al agua y ganará el juego. Su victoria quedará fehacientemente constatada porque la luz que le corresponde indicará ese hecho.

Comenzamos con esta reseña una nueva categoría de artículos a la que llamaremos "Miscelánea", en la que tendrán cabida una amplia variedad de temas con multitud de contenidos. Esperamos que esta novedad sea de tu agrado.

Leer más...
Práctica
Detector de polaridad

Uno de los mayores errores que se cometen al enchufar equipos electrónicos a baterías o a fuentes de alimentación de corriente continua es la inversión de polaridad. ¿Te ha ocurrido esto a ti alguna vez al instalar una emisora de radioaficionado en tu automóvil y conectarla a su circuito eléctrico?.

Cuando se da esta circunstancia uno se pregunta... "¿como me ha podido pasar a mi?. No es posible, estoy viviendo un mal sueño, una pesadilla. Yo siempre voy con muchísimo cuidado. Pronto despertaré...". Pero no. Por desgracia no se trata de un sueño sino de una situación real. Has cometido el error más frecuente cuando se manejan equipos electrónicos con alimentación continua exterior; la temida inversión de polaridad.

Para que esto no te vuelva a pasar vamos a enseñarte a construir un sencillo aparato con el que podrás detectar muy facilmente la polaridad de una tensión continua desde 2 hasta 230 voltios aproximadamente. También te indicará, caso de que no se trate de una tensión continua, si dicha tensión es alterna.

Mediante unos diodos LED bicolor este tester te marcará, sin ninguna posibilidad de error, cual es el polo positivo y cual el negativo de una determinada toma de corriente eléctrica o si por contra se trata de una tensión alterna. ¿Te interesa?. Sigue leyendo, por favor...

Leer más...
Teoría
Cálculos con resistencias II

En otros artículos de este blog ya hemos hablado de las resistencias, componente pasivo importantísimo en electrónica.

Nos hemos referido a ellas cuando hemos hablado de la ley de Ohm, hemos visto los montajes en serie y en paralelo, y también hemos estudiado algún que otro detalle relativo al cálculo de su valor junto con los diodos led.

Mediante el presente artículo continuamos adelante en este sentido, tocando temas que consideramos esenciales para comprender los circuitos electrónicos avanzados.

Puede que una resistencia te parezca un componente de poca o ninguna importancia. Nada mas lejos de la realidad.

Podemos decir sin temor a equivocarnos que si no existiera este elemento, la electrónica no existiría tal y como la conocemos hoy dia. Por ello te invitamos a continuar leyendo este artículo en el que desvelaremos más cosas relativas a este simple pero imprescindible componente electrónico.

Leer más...
Noticias
Revista 27 MHz - Fascículo 4

Fascículo Nº 4 de la revista "27 MHz" dedicada a la CB (Banda Ciudadana).

Extracto de su contenido: Circuitos PLL, teoría de antenas (IV), amplificador de voz, antena vertical de balcon, incorpora un VOX a tu radioteléfono, fuentes de alimentación con reguladores fijos, comprobación y medida de semiconductores, diodos zener, código Q, argot y otros códigos, etc...

Leer más...

Temporizadores - Luz de escalera

Ciudad iluminadaEl ser humano viene usando temporizadores desde hace cientos de años, incluso antes de que la electricidad fuera descubierta tal y como la conocemos hoy. Por ejemplo, hay pruebas de que allá por el siglo XIV ya se usaba el llamado "reloj de arena" para evaluar periodos de tiempo de cierta duración.

Incluso nos podríamos remontar a miles de años atrás, hasta el periodo babilónico, para hablar de la clepsidra o "reloj de agua", también usado por egipcios y atenienses, estos últimos con objeto de "temporizar" y controlar el espacio de tiempo asignado a los oradores.

Hoy dia los temporizadores electrónicos son circuitos utilizados de manera muy habitual, tanto incorporados a determinados equipos como de forma independiente y autónoma.

Ejemplos de aparatos que incluyen un temporizador son: hornos microondas y convencionales, ventiladores, acondicionadores de aire, lavadoras, secadoras, receptores de radio y TV, etc...

También existen de forma independiente para controlar el tiempo de cocción de los alimentos, o para encender y/o apagar luces y cualquier cosa conectado a ellos.

Pero concretamente en este artículo vamos a tratar de un temporizador que solemos usar practicamente a diario; el que casi todos los bloques de viviendas tienen instalado en sus escaleras para controlar el tiempo que las lámparas permanecen encendidas.

Algo que queremos dejar muy claro antes de empezar es lo que nos hemos marcado como objetivo al escribir este artículo.

Nuestra pretensión no es exponer el funcionamiento detallado de un verdadero temporizador electrónico de escalera, bastante más complejo de lo que vas a encontrar aquí. Lejos de eso, sobre todo teniendo en cuenta que estamos en la sección "Básico", lo que intentamos hacer que comprendas es el funcionamiento y la aplicación práctica de algunos componentes electrónicos fundamentales, como el condensador y el transistor BJT.

También hemos querido repasar una particular configuración de montaje con dos transistores, conocida como "Darlington", y su principal diferencia si la comparamos con la clásica de emisor común estandar con un solo transistor. ¡Comenzamos!.

EL CIRCUITO BASE
Para que puedas ir asimilando conocimientos facilmente lo mejor será comenzar desde el principio, mostrándote el circuito básico desde el que vamos a partir. Posteriormente lo iremos modificando para mejorarlo, dentro de lo posible, y obtener al final nuestro temporizador de luz de escalera.

Al tratarse solo de un circuito didáctico, destinado mas bien al aprendizaje y conocimiento funcional de los componentes que intervienen en él, vamos a implementarlo en baja tensión y con corriente continua, lo que significa que usaremos una simple pila o batería para alimentarlo.

El esquema básico de principio es el que te presentamos a continuación.

Esquema básico luz escalera

Cuando el circuito está en reposo el transistor T1 no conduce, ya que no recibe ningún tipo de polarización entre base y emisor. En estas circunstancias la lámpara L no se ilumina.

Las cosas cambian cuando presionamos momentaneamente el pulsador P1. Inmediatamente el transistor comienza a conducir, ya que entonces su base si que recibe la necesaria intensidad de corriente a través de la resistencia R1.

Pero además, el condensador C1 se ha cargado a tope en cuanto P1 se cerró de manera que, aunque quitemos el dedo del pulsador, la base de T1 continuará recibiendo la polarización adecuada para conducir hasta el momento en que C1 se descargue lo suficiente.

Bajo estas condiciones la lámpara L seguirá luciendo durante un periodo de tiempo determinado principalmente por la capacidad del condensador y el valor de la resistencia R1. Ya tenemos nuestro temporizador de escalera, muy básico pero completamente funcional. No obstante se puede mejorar y lo vamos a hacer.

MEJORAS DEL CIRCUITO

Imagina que necesitamos colocar nuestro temporizador en un bloque con muchas viviendas, de diez o doce plantas. Logicamente, para no quedarnos a oscuras a mitad de camino, necesitaremos un periodo de iluminación más largo. ¿Como lo conseguiremos?.

Ya hemos adelantado que modificando la capacidad del condensador podemos alterar el mencionado periodo. En caso de necesitar más tiempo lo que tendríamos que hacer sería aumentar la capacidad del condensador. No obstante, aunque esta solución puede funcionar, para periodos relativamente largos esto supondría la utilización de condensadores voluminosos y caros que, además, introducirían cierta inestabilidad e imprecisión en el circuito con el transcurso del tiempo y los cambios de temperatura ambiente.

También podríamos aumentar el valor de la resistencia R1 y así conseguir tiempos de descarga más largos. Sin embargo, esta solución tampoco sería muy satisfactoria ya que, a partir de un determinado valor de esta resistencia, el transistor T1 no trabajaría en la zona de polarización "segura" y es muy posible que nuestro circuito arrojara un índice de fallos elevado. ¿Entonces como conseguimos tiempos más largos de forma estable?.

La mejor solución pasa por utilizar un "super-transistor" con una ganancia de corriente (o "amplificación") muy superior a la normal. De esta manera la lámpara permanecería encendida aún con corrientes de base muy pequeñas, tan pequeñas que, aunque en el circuito anterior con un transistor convencional no pueden mantener a T1 conduciendo, al usar el "super-transistor" con tan elevada ganancia podríamos prolongar el tiempo de encendido de manera más que satisfactoria.

A este "super-transistor" se le conoce como "Darlington" y puede implementarse mediante el uso de un solo componente físico conteniendo dos transistores dentro del mismo encapsulado o bien conectando dos componentes discretos para que funcionen de ese modo.

Símbolo del transistor Darlington

La ganancia teórica de un Darlington es el producto de la ganancia de ambos transistores. Eso quiere decir que si cada transistor tiene una ganancia individual de 100, el Darlington tendría una ganancia en conjunto de 100 x 100 = 10.000 aunque en la práctica nunca llegan a alcanzarse estos niveles.

Con un transistor Darlington (o dos transistores montados con esa configuración) nuestro circuito, a pesar de utilizar los mismos valores de condensador y resistencia, disfrutaría de un periodo de iluminación mucho más largo al aprovechar más a fondo la carga contenida en el condensador C1. Su esquema quedaría de la siguiente manera.

Esquema luz escalera con Darlington

Pero el dispositivo todavía adolece de un problema grave. El tiempo durante el cual la lámpara se mantiene encendida es fijo y no se puede modificar sin cambiar componentes. En la práctica, esto hace que solo lo podamos usar en edificios de una altura determinada.

El temporizador debería ser ajustable, es decir, que mediante algún dispositivo adicional (por ejemplo un trimmer o potenciómetro de ajuste) pudiéramos modificar el tiempo que la lámpara se mantiene encendida a lo largo de un margen razonable, de manera que pudiéramos instalarlo tanto en edificios de poca altura como en los más altos, dando tiempo suficiente al usuario para no quedarse a oscuras por el camino, pero también haciendo que la lámpara se apague después de un periodo de iluminación lógico y no malgaste energía inutilmente.

Una manera de conseguir esto es controlando el tiempo de descarga del condensador. Mira el siguiente esquema.

Esquema luz escalera con ajuste del tiempo

Hemos añadido un potenciómetro ajustable de 47k (PT1) y una resistencia en serie de 470 Ohmios (R2). Esta última resistencia tiene la misión de que no se produzca un cortocircuito franco cuando PT1 esté en su nivel mínimo de cero ohmios y entonces se presione el pulsador P1.

El conjunto de resistencia mas potenciómetro se ha colocado en paralelo con el condensador C1, de manera que este último se descargará a su través. El tiempo de descarga dependerá del valor ajustado en el potenciómetro. A un valor alto de PT1 corresponderá una descarga lenta y un periodo de tiempo largo. Para un valor bajo de PT1 la descarga será más rápida y el periodo de tiempo será más corto.

Eligiendo convenientemente los valores de R1, R2, C1 y PT1 conseguiremos un funcionamiento perfecto para un periodo de tiempo de encendido lo suficientemente flexible para la mayoría de situaciones.

Hemos preparado un video en el que podrás ver sobre el terreno todo lo que aquí hemos explicado.

Regístrate... ES GRATISSi no eres usuario "Premium" puedes visualizarlo en nuestro canal de Youtube. También puedes suscribirte al canal y de esta manera no te perderás ninguna de nuestras publicaciones.

Esperamos que hayas disfrutado con este artículo. No dejes de visitarnos. Recuerda que Radioelectronica.es es tu punto de encuentro.

Un saludo a todos.

 
C O M E N T A R I O S   
Re: Excelente como siempre

#2 Departamento Técnico » 23-07-2017 19:31

¡Hombre Juan Carlos!... Cuanto me alegra leerte de nuevo. Muchas gracias por tus felicitaciones.

Ante todo espero que os encontreis bien por allí arriba. Por aquí abajo nos estamos asando de calor. Menos mal que tenemos cerca la playa.

Como con la crisis no podemos pillar vacaciones tenemos algo más de tiempo para hacer cositas y darle un empujoncito a la web. Hay mucha gente que le interesa este tema y nos gusta compartir lo poco que sabemos.

Un fuerte abrazo.

Excelente como siempre

#1 Juan Carlos López Duque » 22-07-2017 22:13

Muy bien Don Jose; me encantan sus videos, están impecablemente realizados y poseen una didáctica ejemplar. Son sencillos en los montajes, lo que nos viene muy bien a los que, como yo, somos unos novatos y junto a sus explicaciones hacen un elemento de gran ayuda.
Ánimo.
Juan Carlos

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.