Acceso



Registro de usuarios
Contáctenos
Teoría
Las válvulas de vacío VIII

Llegamos al artículo número ocho y último dedicado a las válvulas de vacío. Estudiaremos en él dos de las más usadas en su dia, junto con el triodo. Nos referimos al tetrodo y al pentodo termoiónicos.

Aunque existían válvulas de más electrodos, las mismas eran utilizadas principalmente en montajes muy específicos y particulares, por lo que creemos que con los dos tipos mencionados cumplimos ampliamente con nuestro objetivo de dar a conocer superficialmente estos antiguos componentes electrónicos.

Además, en la actualidad aún se siguen empleando tanto triodos como pentodos en ciertas aplicaciones, por ejemplo en determinados amplificadores lineales de RF. Incluso hemos podido ver algunos amplificadores de audio actuales fabricados con estos componentes ya que, según la opinión de muchos expertos en sonido, la calidad, fidelidad y limpieza que se obtiene mediante tubos de vacío es superior a la conseguida mediante el uso de semiconductores.

Sin embargo, el resto de válvulas de más electrodos han caido en completo desuso, a excepción de las que montan los receptores que se fabricaron por aquellos años y que aún continúan funcionando en la actualidad, por lo que no serviría de gran cosa escribir un artículo dedicado a ellas.

Leer más...
Otros Temas Interesantes
Noticias
Todos los conectores para informática

Base de datos informática con más de 1000 páginas de información sobre conectores, conexiones, adaptadores, circuitos, etc...

Leer más...
Radioaficionados
Modulador de A.M. con un 7805

Seguro que alguna que otra vez habrás oido decir a alguien que la electrónica es un arte. Y la verdad es que, aunque para desarrollar cualquiera de sus facetas no hace falta un lienzo donde pintar, si que a veces nos encontramos con determinados circuitos que pueden llegar a sorprendernos gratamente, ya sea por su originalidad, por la manera en que están implementados o por cualquier otro motivo. De ahí que algunas personas se expresen como hemos mencionado al principio.

Como pasa con tantas otras cosas en la vida, en electrónica existen muchas maneras diferentes de hacer lo mismo, y es esto precisamente lo que a algunos les parece una cuestión de talento y habilidad particulares.

Al circuito que nos ocupa hoy podríamos calificarlo al menos con el adjetivo "atípico", ya que vamos a usar un regulador de tensión fija del tipo 7805 como modulador para un transmisor de AM. ¿Te lo puedes creer?.

Tanto si te lo crees como si no, te invitamos a leer este artículo al que, como poco, consideramos bastante interesante y al mismo tiempo instructivo para todos aquellos dispuestos a emprender la construcción de su propia emisora de radio en AM. Lo que vamos a describir aquí será una parte importante de la misma. ¿Nos sigues?.

Leer más...
Miscelanea
Preamplificador para guitarra eléctrica

¿Te gusta tocar la guitarra eléctrica?. Es posible que hasta seas el afortunado poseedor de una de ellas. Sin embargo, quizás no tengas el equipo de sonido adecuado para oirla con la suficiente potencia y calidad.

Esto último lo decimos porque la mayoría de amplificadores y equipos de audio domésticos del mercado no disponen de una entrada convenientemente adaptada a las características del sonido entregado por este instrumento.

Efectivamente, es habitual encontrar en los amplificadores, e incluso en muchas mesas de mezcla, entradas tipo "AUX", "LINE", "CD", "TUNER" o "PHONO", pero pocos son los que tienen una entrada que indique "GUITAR".

Sabedores de esto, hemos pensado que a muchos de vosotros os interesaría fabricaros un pequeño preamplificador, de funcionamiento seguro y con una elevada calidad, que intercalado entre una entrada auxiliar y el mencionado instrumento os permitirá elevar la señal de este último y aplicarla entonces al equipo del que dispongáis para que el sonido en los altavoces tenga el nivel adecuado.

Os presentamos un circuito que con solo dos transistores BJT, seis resistencias y cinco condensadores os permitirá conseguir este objetivo.

¿Por qué no clicas en "Leer completo..." y compruebas la sencillez del dispositivo?.

Leer más...
Práctica
Soldador de temperatura controlada económico

Si es la primera vez que vas a comprarte un soldador es muy probable que te encuentres en una disyuntiva. En primer lugar, no tienes ni idea a que tipo de trabajos vas a enfrentarte y por ese motivo no te decides por una punta determinada.

Después está el tema de la potencia necesaria para el calentamiento: ¿Estarían bien 15W? ¿o quizás serían deseables 30W? ¿Prefieres a lo mejor un soldador de 60W para trabajos de cierta entidad?.

La evidente realidad es que el soldador tendría que elegirse en consonancia con el tipo de trabajo que uno vaya a realizar. Para soldaduras de componentes muy pequeños, delicados y los de tipo SMD es preferible un soldador de punta fina y de unos 15 watios. Sin embargo, si vas a usarlo para trabajos mas generales (componentes estandar, cables de conexión de cierto grosor, etc...) lo mejor sería acudir a uno de más potencia, como por ejemplo 30 watios.

Y si haces montajes que necesiten de alguna soldadura a masa localizada en la propia caja o chasis metálico del aparato que construyes, entonces lo mejor sería uno de 60 watios como poco y con un generoso tamaño de punta que permita el calentamiento de una zona amplia, de manera que esa soldadura no te salga "fria".

La pregunta que surge es: ¿no existe un soldador que permita la consecución óptima de la mayoría de los trabajos que un técnico electrónico realiza normalmente hoy dia?. La respuesta la tienes a continuación.

Leer más...
Teoría
El transformador

Corría el año 1851 cuando el físico alemán Heinrich Daniel Ruhmkorff ideó la bobina que lleva su nombre. Se trataba de un generador que permitía producir tensiones elevadísimas, del orden de decenas de miles de voltios, a partir de la corriente continua de una batería. Con ello se logró conseguir la fuente de tensión necesaria para crear diferentes dispositivos que posteriormente traerían grandes beneficios para la humanidad.

La bobina de Ruhmkorff fué utilizada, por ejemplo, por Heinrich Rudolf Hertz para la realización de sus experimentos con ondas electromagnéticas, lo que significaría los inicios de la radio. También comenzó a utilizarse en los equipos de rayos X como generador electrovoltáico de alta tensión y en los equipos telegráficos de la época. Además, la invención de Ruhmkorff se utilizó en investigaciones relacionadas con diferentes ramas de la física y de la química.

En realidad, Heinrich Daniel Ruhmkorff lo que diseñó fué el primer transformador eléctrico, ya que de lo que se trataba era de un bobinado primario con unas pocas espiras de hilo relativamente grueso por el que se hacía circular una corriente continua pulsante y de un devanado secundario con muchísimas espiras más que el primario y realizado con hilo mas fino. Por lo tanto, Ruhmkorff tuvo el privilegio de fabricar el primer transformador elevador de la historia de la humanidad. ¿Quieres seguir aprendiendo cosas relacionadas con los transformadores? Sigue leyendo, por favor.

Leer más...
Noticias
Aprende a manejar el polímetro digital

En vista de todos los visitantes de nuestro blog que nos escriben haciendonos preguntas sobre el uso correcto del polímetro digital nos hemos decidido a crear un completo curso sobre este tema en el que tiene cabida tanto la información enfocada a los que empiezan a usarlo como aquella destinada a los que tienen conocimientos más avanzados de electrónica.

La obra tiene una extensión de más de 200 páginas y comienza con temas muy elementales, como mediciones de tensiones en pilas y baterias, para aquellos que nunca han tenido un polímetro entre sus manos.

Poco a poco el nivel técnico va aumentando, de manera que el lector irá aprendiendo casi sin darse cuenta a manejar esta herramienta de forma diestra, asimilando paulatinamente aquellos conocimientos que a lo largo de los años han ido adquiriendo los profesionales de la reparación eléctrica y electrónica.

Leer más...

Electromagnetismo (I)

En nuestro artículo teórico anterior en el que hablábamos del magnetismo y de los imanes, dijimos que la electricidad produce magnetismo y que el magnetismo produce electricidad. En realidad una cosa y la otra están íntimamente unidas. Como ya hemos comentado, la electricidad y el magnetismo son dos aspectos diferentes de un mismo fenómeno físico llamado electromagnetismo y es precisamente ese fenómeno lo que en este artículo vamos a comenzar a tratar. Este conocimiento es de absoluta necesidad para seguir nuestro estudio.

Para bién o para mal, el electromagnetismo está muy presente en nuestras vidas; en cada electrodoméstico que tenemos en casa, en todos los sistemas de comunicaciones actuales (las señales de humo utilizadas por los indios norteamericanos no es un sistema de comunicación actual), en los automóviles y motocicletas, en los sistemas de posicionamiento global o GPS, en los sistemas de telemetría, en el registro y reproducción del sonido, en los equipos medicos y quirúrgicos utilizados en los hospitales, etc... Es tan vasto el campo de aplicación del electromagnetismo en la vida real que nos faltaría espacio en este artículo para nombrar cada una de estas posibilidades. Por la importancia que tiene, es vital que conozcas mas profundamente este fenómeno. Por lo tanto, estás obligado a seguir leyendo.

MAGNETISMO POR CORRIENTE
Ya hemos dicho que la electricidad produce magnetismo y que el magnetismo produce electricidad.

En este apartado vamos a estudiar la primera parte de esta afirmación y vamos a demostrar que podemos crear un campo magnético mediante el uso de una corriente eléctrica. Sabemos, según lo estudiado en el artículo dedicado al magnetismo, que la aguja de una brújula señala en la dirección Norte-Sur siempre que no se vea afectada por algún otro campo magnético que no sea el terrestre. Si efectivamente hacemos que dicha aguja se desvíe de su posición natural estaremos demostrando la existencia de un campo magnético que está influyendo en su funcionamiento normal y que interfiere en su correcta señalización. Profundicemos un poco sobre esto.

Vamos a coger nuestra brújula, una simple pila, un interruptor y un hilo de cobre rígido de una sección entre 1,5 y 2,5 mm. Dispongamos estos componentes como mostramos en la ilustración. Mientras no cerremos el interruptor y no circule corriente alguna por el conductor de cobre nuestra brújula marcará la orientación Norte-Sur correcta. Pero... ¿que ocurre en el momento en que cerremos el interruptor y comience a circular la corriente eléctrica a través del conductor de cobre?.

Al hacer esto la aguja de la brújula se desplaza de la posición que tenía antes de hacer pasar la corriente eléctrica y deja de señalar la orientación correcta (hacer clic para ver animación). Con esta evidencia demostramos la existencia de un campo magnético producido por la electricidad que hemos hecho circular, y hemos de hacer constar que antes de hacer circular la corriente dicho campo magnético no existía. Lo que hemos creado se llama "CAMPO ELECTROMAGNÉTICO" al tratarse de un campo magnético producido por una corriente eléctrica.

En el artículo anterior también hemos hablado de otro método para poner en evidencia el campo magnético creado al hacer pasar una corriente eléctrica por un conductor. En esta ocasión vamos a utilizar una cartulina y unas pocas limaduras de hierro además de la consabida pila, el interruptor y el conductor eléctrico de cobre rígido. Fíjate en el dibujo adjunto. Mientras el interruptor permanezca abierto no ocurre nada y las limaduras de hierro permanecen exactamente igual que cuando las depositamos en la cartulina ya que no circula ninguna corriente eléctrica. En el momento en que cerremos el interruptor y la corriente eléctrica comience a circular... ¿que pasa?. Como por arte de magia las limaduras se situan alrededor del alambre de cobre formando círculos concentricos tomando como centro al conductor que atraviesa la cartulina. Ten en cuenta que a veces hay que dar unos pequeños golpecitos a la cartulina para ayudar a las limaduras de hierro a situarse. Queda claro con este experimento que la corriente eléctrica crea un campo magnético circular alrededor de nuestro conductor de cobre.

CORRIENTE POR MAGNETISMO
Como hemos repetido hasta la saciedad, la electricidad y el magnetismo están intimamente unidos y caminan juntos de la mano. Por lo tanto es lógico pensar que el fenómeno anterior es reversible, es decir, al igual que la electricidad puede producir magnetismo, el magnetismo podría tener la facultad de producir electricidad. Pués efectivamente va a ser que sí. A partir de un campo magnético podemos obtener una corriente eléctrica y además podemos comprobarlo de forma muy sencilla.

Para ello necesitamos un imán de herradura que tenga una potencia relativamente alta y un miliamperímetro que sea lo suficientemente sensible, preferiblemente analógico y con cero central. Con hilo de cobre rígido de unos 2 o 3 milímetros de sección tenemos que hacer una varilla recta conectada al miliamperímetro con hilo de cobre flexible como vemos en el dibujo. Dicha varilla rígida la colocaremos entre los polos del imán y le imprimiremos un movimiento de vaivén. Cuando la varilla atraviese las lineas de flujo del imán podremos observar como el instrumento señala el paso de una corriente y lo hará cada vez que la varilla se mueva dentro del campo magnético del imán. Dicha corriente tendrá un sentido u otro dependiendo de la dirección que tome la varilla en su movimiento de vaivén.

Fíjate en esto; si dejamos inmóvil la varilla y es el imán el que movemos el fenómeno se repite, es decir, que la corriente eléctrica se produce de igual manera tanto cuando dejamos inmovil la varilla y movemos el imán, como cuando dejamos inmóvil el imán y lo que movemos es la varilla. Lo que es absolutamente necesario para que aparezca la corriente eléctrica es que exista movimiento entre imán y varilla y que esta última atraviese el campo magnético del imán, ya sea moviendo una cosa o la otra. Lógicamente, para que la corriente producida sea permanente también el movimiento deberá permanecer en el tiempo.

Gracias a este experimento podemos afirmar que al igual que una corriente eléctrica puede producir un campo magnético la situación inversa también es cierta, es decir, que cuando un conductor atraviesa un campo magnético y alguno de los dos se mueve con respecto al otro, entonces se origina una corriente eléctrica. Esto que acabamos de decir es una de las cosas más importantes descubiertas en el campo de la electricidad, y sus aplicaciones son inmensas como veremos mas adelante.

SENTIDO DEL CAMPO MAGNÉTICO
Lo que determina el sentido de las lineas de fuerza del campo magnético de un conductor por el que circula una corriente eléctrica es precisamente la dirección de dicha corriente. Por esta razón, en los cables eléctricos paralelos dichos campos magnéticos tienden a anularse el uno al otro al circular la corriente por ambos al mismo tiempo y en direcciones diferentes, es decir, mientras por uno de los cables la corriente se aleja por el otro retorna.

El sentido del campo magnético en un conductor recto puede determinarse facilmente mediante la llamada REGLA DE LA MANO IZQUIERDA. Su enunciado dice lo siguiente:

Si un conductor se coge con la mano izquierda y hacemos que nuestro dedo pulgar apunte en el sentido en que circula la corriente, los dedos que rodean el conductor indicarán la dirección del flujo magnético

Para entender a la perfección el significado de esta regla basta con mirar la ilustración adjunta. Como ya hemos mencionado, la regla de la mano izquierda tiene aplicación siempre que estemos tratando con un conductor recto. Pero... ¿que ocurre al darle a nuestro conductor la forma de una espira?. El próximo tema promete ser interesante.

SOLENOIDES O BOBINAS
Si cogemos nuestro conductor recto y le damos la forma de una espira resulta que nuestro invento se comporta como un pequeño imán, con su polo norte y su polo sur. El polo norte es la parte de la espira por la que sale el flujo magnético, mientras que el polo sur es la parte de la espira por la que entra dicho flujo. La realidad es que el campo magnético creado por nuestra espira es muy débil, sin embargo, por débil que sea existe, está ahí. La pregunta ahora es... ¿Que podemos hacer para reforzar ese campo magnético y hacerlo mas poderoso?.

¿Recuerdas la frase del fabulista griego Esopo "La unión hace la fuerza"? Esta frase hace hincapié en la importancia del trabajo en equipo, y eso es precisamente lo que vamos ha hacer con nuestra espira. Vamos a fabricar lo que se llama un solenoide o bobina juntando muchas espiras de manera que sus campos magnéticos se van a sumar y vamos a obtener uno con una fuerza mucho mayor. Para que los campos magnéticos se sumen las espiras deberán estar muy próximas unas a otras, por lo que es obligado bañar al conductor utilizado en un barniz aislante para evitar cortocircuitos cuando las espiras se toquen entre sí.

Cuando circula una corriente eléctrica por él, un solenoide se comporta exactamente igual que un imán. Su campo magnético es idéntico al creado por un imán permanente por lo que obtenemos un polo Norte y un polo Sur, lo mismo que con un imán de hierro, acero o magnetita.

Mediante otra sencilla regla, podemos determinar cual es el polo Norte y cual el polo Sur de nuestro solenoide. Para ello recurriremos de nuevo a nuestra mano izquierda. La regla, en esta ocasión, dice lo siguiente:

Si colocamos los dedos de nuestra mano izquierda sobre un solenoide de manera que señalen la dirección que sigue la corriente que circula por él, nuestro dedo pulgar extendido nos señalará el Norte del campo magnético producido

De nuevo te remitimos a la ilustración adjunta para que veas con claridad el significado del enunciado anterior.

Hasta aquí el primer artículo dedicado al electromagnetismo. En el próximo artículo continuaremos hablando de la inducción y autoinducción magnética y electromagnética, técnicas muy utilizadas en radio, además de otras cosas muy interesantes que no te deberías perder. Hasta entonces, nos vemos pronto.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +