Acceso



Registro de usuarios
Contáctenos
Teoría
El receptor elemental (III)

Queremos que este artículo cumpla una doble misión. Por un lado seguiremos ahondando en las partes componentes del receptor elemental para ir avanzando poco a poco hacia nuestro destino. Para ello, nos adentraremos en el estudio del diodo como detector y tocaremos los "detectores de galena" tan usados por nuestros abuelos hace años.

Por otro lado, queremos dejar claro algo referente al sentido de la corriente eléctrica, ya que existe cierta confusión al respecto. Muchos dicen que la corriente eléctrica circula desde el negativo hacia el positivo (eso es lo que enseñamos en esta web). Otros, no obstante, dicen que no, que la corriente va desde el positivo hacia el negativo ya que son muchos los tratados de electrónica que enseñan esto último. ¿Tu que crees?. ¿A que lado te inclinas?.

En honor a la verdad debemos decir que, en lo que al estudio de la electrónica se refiere y a excepción de ciertas parcelas determinadas, prácticamente no influye para nada que la corriente fluya en un sentido o en otro. Sin embargo, no está de más aclarar este concepto y explicar por qué motivo parte de la literatura sobre electricidad y electrónica dice una cosa y parte dice otra muy distinta. ¿Te interesa?. Pasa adentro, por favor.

Leer más...
Otros Temas Interesantes
Noticias
Nuevo calculador para empresas Ebay

Os presentamos un nuevo calculador de precios de venta para Ebay. Se trata de una nueva versión, distinta de la orientada a particulares, la cual es ideal para el cálculo de precios de empresas con tienda. Facilitará mucho las cosas si se ponen artículos a la venta de forma constante y a diario.

Leer más...
Radioaficionados
El receptor reflex

En este artículo vamos a describir el funcionamiento del llamado receptor "reflex" al que algunos también conocen como receptor "reflejo". En este tipo de receptor se utiliza una técnica que hace que una misma etapa del equipo ejecute dos tareas distintas al mismo tiempo. Quizás esto en un principio te parezca dificil de asimilar, pero no te preocupes porque en realidad su funcionamiento es muy sencillo y así te lo vamos a mostrar.

Además, no vamos a limitarnos a explicarte como funciona. También hemos querido que accedas a la información necesaria para que construyas uno de estos receptores, usando componentes muy fáciles de encontrar en el mercado.

El circuito que presentaremos no necesita una antena exterior ni una toma de tierra para funcionar, sobre todo con emisoras locales, aunque si quieres poder recibir emisoras lejanas sería conveniente usarlas. ¿Te interesa el tema?.

Leer más...
Miscelanea
La circunferencia, el círculo y el número PI (π)

La mayor parte de las personas que vivimos en paises desarrollados, quizás porque estamos acostumbrados a obtenerlo todo con suma facilidad y/o que las cosas vengan a nosotros como caídas del cielo, a menudo las damos por sentadas de manera automática.

Practicamente en ningún momento nos preguntamos porqué algo es o se produce de una determinada manera. Nos basta con saber que tal o cual cosa es como es y punto, lo aceptamos sin reservas.

Algo así nos ha ocurrido a muchos cuando asistíamos a la escuela, en épocas pasadas. ¿Recuerdas cuando aprendiste la fórmula para hallar la longitud de la circunferencia?. ¿O cuando te enseñaron la fórmula para calcular la superficie del círculo?. Todos las aceptamos sin pestañear, y pocos fuimos los que nos preguntamos de donde habia salido el famoso número PI (π). Muchos daban por sentado que aquello era así porque lo decía nuestro profesor de matemáticas y se acabó.

Pero en realidad, esas conocidas fórmulas han salido de algún sitio o, mejor dicho, han sido promulgadas por una o varias personas después de haber dedicado mucho tiempo y esfuerzo al estudio de estas figuras geométricas.

¿Te gustaría saber más sobre este tema y conocer como se han llegado a obtener las mencionadas fórmulas y como están relacionadas entre ellas?... ¡Pues clica en "Leer completo..." ya!.

Leer más...
Práctica
El teléfono yogur y su versión electrónica

Es muy probable que cuando éramos niños hayamos jugado alguna que otra vez con el llamado "teléfono yogur", probablemente fabricado por nosotros mismos ya que su construcción no ofrece prácticamente ninguna dificultad.

Con solo un par de recipientes de plástico vacíos, que casi siempre se conseguían una vez que habíamos consumido los yogures (de ahí el nombre por el que se le conoce normalmente), unos metros de hilo suficientemente resistente y poco más, teníamos un juguete con el que pasábamos horas y horas de ocio y diversión.

Mientras uno de nosotros aproximaba el bote de yogur a su oreja el otro lo hacía con el que le correspondía a su boca y comenzaba la "transmisión" del mensaje. Y aunque la distancia entre los dos interlocutores no podía exceder de algunos metros, la transmisión de la "fonía" que se conseguía con este artilugio, aunque débil, era relativamente buena.

La verdad es que aquellos eran otros tiempos. Nos divertíamos con cualquier cosa. Y aunque hoy este juguete quizás le siga llamando la atención a los más pequeños, no hay que olvidar que vivimos en la era de la electrónica y casi todos esperamos algo más. De ese "algo más" hablamos en este artículo. Vamos a presentarte la versión electrónica del teléfono yogur. ¿Quieres ver de que se trata?. ¡Adelante!.

Leer más...
Teoría
El receptor elemental (VI)

Una vez que hemos visto qué es un condensador y cual es su funcionamiento tanto en circuitos de corriente continua como en circuitos de corriente alterna, pasamos a ver que papel juega este componente electrónico en el selector de frecuencias de nuestro receptor elemental.

Ya hemos mencionado que el selector de frecuencias de nuestro sencillo receptor lo forman dos componentes: una bobina y un condensador. A estas alturas conocemos ambos elementos y, básicamente y de forma aislada, sabemos como funcionan. Ahora nos toca profundizar un poco en el comportamiento de los mismos cuando se montan juntos, formando ambos el corazón del selector de frecuencias de nuestro receptor.

Es verdad que hemos comentado que lo que ocurre en este tipo de circuitos es algo un tanto complejo, pero esto no va a impedir que, mediante varios ejemplos y con algunas ilustraciones, conozcamos los efectos que se producen cuando bobina y condensador hacen su trabajo particular de seleccionar señales de R.F. en el receptor que estamos estudiando. ¿Te apetece seguir?.

Leer más...
Noticias
Calculador de decibelios

Parece que es mucha la confusión que existe en torno a esta unidad de medida relativa aunque, para hablar con exactitud, no podemos decir que se trate de una "unidad de medida" propiamente dicha (de ahí el calificativo de "relativa"). Hablamos del decibelio. ¿Es cierto que es algo tan complicado?.

Como ocurre con otros conceptos, la web está plagada de información sobre ello, aunque desgraciadamente gran parte de esa información no es entendible con facilidad por aquellas personas que no están relacionadas directamente con algún sector técnico (electricidad, electrónica, audio, física, radio, televisión, etc...).

Por ello hemos decidido escribir un artículo que trate de clarificar y desmitificar este término, aunque eso será más adelante. Por ahora queremos dejaros una herramienta que os será de mucha utilidad para comprender lo que diremos en el mencionado artículo y, por qué no, si os dedicáis profesionalmente o no a ejercer alguna actividad relacionada con temas técnicos.

Clica en "Leer completo..." para más detalles.

Leer más...

Electromagnetismo (I)

En nuestro artículo teórico anterior en el que hablábamos del magnetismo y de los imanes, dijimos que la electricidad produce magnetismo y que el magnetismo produce electricidad. En realidad una cosa y la otra están íntimamente unidas. Como ya hemos comentado, la electricidad y el magnetismo son dos aspectos diferentes de un mismo fenómeno físico llamado electromagnetismo y es precisamente ese fenómeno lo que en este artículo vamos a comenzar a tratar. Este conocimiento es de absoluta necesidad para seguir nuestro estudio.

Para bién o para mal, el electromagnetismo está muy presente en nuestras vidas; en cada electrodoméstico que tenemos en casa, en todos los sistemas de comunicaciones actuales (las señales de humo utilizadas por los indios norteamericanos no es un sistema de comunicación actual), en los automóviles y motocicletas, en los sistemas de posicionamiento global o GPS, en los sistemas de telemetría, en el registro y reproducción del sonido, en los equipos medicos y quirúrgicos utilizados en los hospitales, etc... Es tan vasto el campo de aplicación del electromagnetismo en la vida real que nos faltaría espacio en este artículo para nombrar cada una de estas posibilidades. Por la importancia que tiene, es vital que conozcas mas profundamente este fenómeno. Por lo tanto, estás obligado a seguir leyendo.

MAGNETISMO POR CORRIENTE
Ya hemos dicho que la electricidad produce magnetismo y que el magnetismo produce electricidad.

En este apartado vamos a estudiar la primera parte de esta afirmación y vamos a demostrar que podemos crear un campo magnético mediante el uso de una corriente eléctrica. Sabemos, según lo estudiado en el artículo dedicado al magnetismo, que la aguja de una brújula señala en la dirección Norte-Sur siempre que no se vea afectada por algún otro campo magnético que no sea el terrestre. Si efectivamente hacemos que dicha aguja se desvíe de su posición natural estaremos demostrando la existencia de un campo magnético que está influyendo en su funcionamiento normal y que interfiere en su correcta señalización. Profundicemos un poco sobre esto.

Vamos a coger nuestra brújula, una simple pila, un interruptor y un hilo de cobre rígido de una sección entre 1,5 y 2,5 mm. Dispongamos estos componentes como mostramos en la ilustración. Mientras no cerremos el interruptor y no circule corriente alguna por el conductor de cobre nuestra brújula marcará la orientación Norte-Sur correcta. Pero... ¿que ocurre en el momento en que cerremos el interruptor y comience a circular la corriente eléctrica a través del conductor de cobre?.

Al hacer esto la aguja de la brújula se desplaza de la posición que tenía antes de hacer pasar la corriente eléctrica y deja de señalar la orientación correcta (hacer clic para ver animación). Con esta evidencia demostramos la existencia de un campo magnético producido por la electricidad que hemos hecho circular, y hemos de hacer constar que antes de hacer circular la corriente dicho campo magnético no existía. Lo que hemos creado se llama "CAMPO ELECTROMAGNÉTICO" al tratarse de un campo magnético producido por una corriente eléctrica.

En el artículo anterior también hemos hablado de otro método para poner en evidencia el campo magnético creado al hacer pasar una corriente eléctrica por un conductor. En esta ocasión vamos a utilizar una cartulina y unas pocas limaduras de hierro además de la consabida pila, el interruptor y el conductor eléctrico de cobre rígido. Fíjate en el dibujo adjunto. Mientras el interruptor permanezca abierto no ocurre nada y las limaduras de hierro permanecen exactamente igual que cuando las depositamos en la cartulina ya que no circula ninguna corriente eléctrica. En el momento en que cerremos el interruptor y la corriente eléctrica comience a circular... ¿que pasa?. Como por arte de magia las limaduras se situan alrededor del alambre de cobre formando círculos concentricos tomando como centro al conductor que atraviesa la cartulina. Ten en cuenta que a veces hay que dar unos pequeños golpecitos a la cartulina para ayudar a las limaduras de hierro a situarse. Queda claro con este experimento que la corriente eléctrica crea un campo magnético circular alrededor de nuestro conductor de cobre.

CORRIENTE POR MAGNETISMO
Como hemos repetido hasta la saciedad, la electricidad y el magnetismo están intimamente unidos y caminan juntos de la mano. Por lo tanto es lógico pensar que el fenómeno anterior es reversible, es decir, al igual que la electricidad puede producir magnetismo, el magnetismo podría tener la facultad de producir electricidad. Pués efectivamente va a ser que sí. A partir de un campo magnético podemos obtener una corriente eléctrica y además podemos comprobarlo de forma muy sencilla.

Para ello necesitamos un imán de herradura que tenga una potencia relativamente alta y un miliamperímetro que sea lo suficientemente sensible, preferiblemente analógico y con cero central. Con hilo de cobre rígido de unos 2 o 3 milímetros de sección tenemos que hacer una varilla recta conectada al miliamperímetro con hilo de cobre flexible como vemos en el dibujo. Dicha varilla rígida la colocaremos entre los polos del imán y le imprimiremos un movimiento de vaivén. Cuando la varilla atraviese las lineas de flujo del imán podremos observar como el instrumento señala el paso de una corriente y lo hará cada vez que la varilla se mueva dentro del campo magnético del imán. Dicha corriente tendrá un sentido u otro dependiendo de la dirección que tome la varilla en su movimiento de vaivén.

Fíjate en esto; si dejamos inmóvil la varilla y es el imán el que movemos el fenómeno se repite, es decir, que la corriente eléctrica se produce de igual manera tanto cuando dejamos inmovil la varilla y movemos el imán, como cuando dejamos inmóvil el imán y lo que movemos es la varilla. Lo que es absolutamente necesario para que aparezca la corriente eléctrica es que exista movimiento entre imán y varilla y que esta última atraviese el campo magnético del imán, ya sea moviendo una cosa o la otra. Lógicamente, para que la corriente producida sea permanente también el movimiento deberá permanecer en el tiempo.

Gracias a este experimento podemos afirmar que al igual que una corriente eléctrica puede producir un campo magnético la situación inversa también es cierta, es decir, que cuando un conductor atraviesa un campo magnético y alguno de los dos se mueve con respecto al otro, entonces se origina una corriente eléctrica. Esto que acabamos de decir es una de las cosas más importantes descubiertas en el campo de la electricidad, y sus aplicaciones son inmensas como veremos mas adelante.

SENTIDO DEL CAMPO MAGNÉTICO
Lo que determina el sentido de las lineas de fuerza del campo magnético de un conductor por el que circula una corriente eléctrica es precisamente la dirección de dicha corriente. Por esta razón, en los cables eléctricos paralelos dichos campos magnéticos tienden a anularse el uno al otro al circular la corriente por ambos al mismo tiempo y en direcciones diferentes, es decir, mientras por uno de los cables la corriente se aleja por el otro retorna.

El sentido del campo magnético en un conductor recto puede determinarse facilmente mediante la llamada REGLA DE LA MANO IZQUIERDA. Su enunciado dice lo siguiente:

Si un conductor se coge con la mano izquierda y hacemos que nuestro dedo pulgar apunte en el sentido en que circula la corriente, los dedos que rodean el conductor indicarán la dirección del flujo magnético

Para entender a la perfección el significado de esta regla basta con mirar la ilustración adjunta. Como ya hemos mencionado, la regla de la mano izquierda tiene aplicación siempre que estemos tratando con un conductor recto. Pero... ¿que ocurre al darle a nuestro conductor la forma de una espira?. El próximo tema promete ser interesante.

SOLENOIDES O BOBINAS
Si cogemos nuestro conductor recto y le damos la forma de una espira resulta que nuestro invento se comporta como un pequeño imán, con su polo norte y su polo sur. El polo norte es la parte de la espira por la que sale el flujo magnético, mientras que el polo sur es la parte de la espira por la que entra dicho flujo. La realidad es que el campo magnético creado por nuestra espira es muy débil, sin embargo, por débil que sea existe, está ahí. La pregunta ahora es... ¿Que podemos hacer para reforzar ese campo magnético y hacerlo mas poderoso?.

¿Recuerdas la frase del fabulista griego Esopo "La unión hace la fuerza"? Esta frase hace hincapié en la importancia del trabajo en equipo, y eso es precisamente lo que vamos ha hacer con nuestra espira. Vamos a fabricar lo que se llama un solenoide o bobina juntando muchas espiras de manera que sus campos magnéticos se van a sumar y vamos a obtener uno con una fuerza mucho mayor. Para que los campos magnéticos se sumen las espiras deberán estar muy próximas unas a otras, por lo que es obligado bañar al conductor utilizado en un barniz aislante para evitar cortocircuitos cuando las espiras se toquen entre sí.

Cuando circula una corriente eléctrica por él, un solenoide se comporta exactamente igual que un imán. Su campo magnético es idéntico al creado por un imán permanente por lo que obtenemos un polo Norte y un polo Sur, lo mismo que con un imán de hierro, acero o magnetita.

Mediante otra sencilla regla, podemos determinar cual es el polo Norte y cual el polo Sur de nuestro solenoide. Para ello recurriremos de nuevo a nuestra mano izquierda. La regla, en esta ocasión, dice lo siguiente:

Si colocamos los dedos de nuestra mano izquierda sobre un solenoide de manera que señalen la dirección que sigue la corriente que circula por él, nuestro dedo pulgar extendido nos señalará el Norte del campo magnético producido

De nuevo te remitimos a la ilustración adjunta para que veas con claridad el significado del enunciado anterior.

Hasta aquí el primer artículo dedicado al electromagnetismo. En el próximo artículo continuaremos hablando de la inducción y autoinducción magnética y electromagnética, técnicas muy utilizadas en radio, además de otras cosas muy interesantes que no te deberías perder. Hasta entonces, nos vemos pronto.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +