Acceso



Registro de usuarios
Contáctenos
Teoría
El generador electromagnético

Existen generadores de corriente de diferentes tipos, y la primera división que podemos hacer de ellos es si son de corriente alterna o de corriente continua. Estos últimos, los de corriente continua, generalmente están basados en fundamentos químicos y/o en la acción de la luz o del calor. Se trata de generadores que proporcionan una tensión constante en sus bornes gracias a la creación de una f.e.m. en su interior generada por una reacción química. Ejemplo de esto son las conocidas pilas en sus diferentes tipos. Sin embargo, en este artículo no vamos a hablar de estos generadores, sino de los mencionados en primer lugar, los de corriente alterna.

Llamados también "alternadores", estos generadores basan su funcionamiento en la inducción electromagnética. Como ya hemos visto en artículos anteriores, cuando un conductor o un solenoide atraviesa las lineas de flujo magnético de un imán se produce en él una corriente inducida. En este artículo vamos a profundizar en este fenómeno, y vamos a hablar sobre el tipo de corriente que es capaz de suministrar un generador elemental de esta clase y algunos pormenores mas sobre ello. ¿Te apuntas?.

Leer más...
Otros Temas Interesantes
Noticias
AFHA - Curso Electrónica, Radio y TV - Tomo 8

Tomo 8 del curso de Electrónica, Radio y Televisión de AFHA.

Leer más...
Radioaficionados
Protección contra inversiones de polaridad

Una de las averías más comunes que nos podemos encontrar en las emisoras de radioaficionado es la inversión de polaridad. Dicha avería se produce al conectar el equipo inadvertidamente a la alimentación con las conexiones al revés, el cable de la entrada positiva (rojo) al electrodo negativo de la batería y el cable de la entrada negativa (negro) al electrodo positivo. Hay radioaficionados que, a pesar de las advertencias por parte del servicio técnico y para ahorrarse unos euros, conectan la emisora a una sola de las baterías (12V) de un vehículo dotado de dos unidades en serie (24V), en vez de utilizar la solución más apropiada que es un reductor de tensión de 24 a 12 voltios. Esto es una fuente constante de problemas tanto para la emisora como para las propias baterias del vehículo y puede propiciar una inversión de polaridad cuando alguien manipula dichas baterias sin desconectar previamente la emisora.

En este artículo vamos a estudiar los sistemas de protección contra inversiones de polaridad de que disponen tanto las emisoras de radioaficionado como muchos otros aparatos electrónicos, entre ellos los ordenadores portátiles por ejemplo, para evitar que el equipo en cuestión resulte dañado (o por lo menos reducir en lo posible el daño) ante un percance de este tipo, y su reparación práctica tomando como ejemplo una conocida emisora de radioaficionado averiada por esta causa. ¿Te interesa?.

Leer más...
Miscelanea
Monitor para la batería del automóvil

Es curioso, pero la verdad es que a todos nos ha pasado alguna vez lo mismo. Nos levantamos una mañana de frio invierno, con prisas porque tenemos el tiempo justo para llegar al trabajo (el que tenga esa suerte). Introducimos la llave de contacto de nuestro auto y la giramos. ¡SORPRESA!... el motor de arranque no voltea o lo hace con desgana.

El coche no furula, no arranca... Entonces algunos manifestamos nuestro enfado en un idioma desconocido, emitiendo ciertos sonidos guturales como.... "Grrrrrrrrr!!!!!". Otros, algo más "expresivos", comenzamos a lanzar por nuestra boquita ciertos vocablos malsonantes, dirigidos sobre todo hacia nuestro sufrido auto que ya tiene, como poco, cinco o seis años.

Sin embargo, esta situación la podríamos haber evitado si hubieramos tenido instalado el circuito que describimos en el presente artículo. Se trata de un simpático piloto de color rojo que nos avisará antes de tiempo de que ha llegado la hora de sustituir la batería de nuestro coche.

Si has leido los dos primeros artículos de la sección "Básico" estamos seguros que no vas a tener problemas para asimilar lo que sigue. ¡Vamos allá!

Leer más...
Práctica
El teléfono yogur y su versión electrónica

Es muy probable que cuando éramos niños hayamos jugado alguna que otra vez con el llamado "teléfono yogur", probablemente fabricado por nosotros mismos ya que su construcción no ofrece prácticamente ninguna dificultad.

Con solo un par de recipientes de plástico vacíos, que casi siempre se conseguían una vez que habíamos consumido los yogures (de ahí el nombre por el que se le conoce normalmente), unos metros de hilo suficientemente resistente y poco más, teníamos un juguete con el que pasábamos horas y horas de ocio y diversión.

Mientras uno de nosotros aproximaba el bote de yogur a su oreja el otro lo hacía con el que le correspondía a su boca y comenzaba la "transmisión" del mensaje. Y aunque la distancia entre los dos interlocutores no podía exceder de algunos metros, la transmisión de la "fonía" que se conseguía con este artilugio, aunque débil, era relativamente buena.

La verdad es que aquellos eran otros tiempos. Nos divertíamos con cualquier cosa. Y aunque hoy este juguete quizás le siga llamando la atención a los más pequeños, no hay que olvidar que vivimos en la era de la electrónica y casi todos esperamos algo más. De ese "algo más" hablamos en este artículo. Vamos a presentarte la versión electrónica del teléfono yogur. ¿Quieres ver de que se trata?. ¡Adelante!.

Leer más...
Teoría
Los semiconductores - La unión PN

Para lograr comprender los fenómenos que se producen en las entrañas de un diodo, de un transistor o de cualquier otro dispositivo semiconductor, primero tenemos que aprender cosas relativas a los llamados "portadores de carga". Ellos son los encargados de establecer el flujo de corriente eléctrica en el cristal semiconductor.

Hasta el momento conoces de sobra a uno de ellos, el electrón, el cual también existe en los materiales buenos conductores. Es probable además que, aunque solo sea de oidas, conozcas al otro miembro de esta familia, el hueco. La existencia de este último en su estructura cristalina es lo que hace especiales a los semiconductores.

El objetivo que nos proponemos conseguir con este artículo es darte la información necesaria para que sepas como actúan estos portadores de carga en el seno del cristal semiconductor, además de otros temas relacionados e igualmente interesantes. Una vez que hayas asimilado esto, estarás preparado para conocer el funcionamiento de la unión PN, alma y corazón de gran parte de los dispositivos semiconductores existentes.

Leer más...
Noticias
Fuente de alimentación estabilizada 0-15V 1A

Fácil de construir, barata y muy útil
para probar montajes y prototipos

Te presentamos en esta ocasión una sencillísima fuente de alimentación estabilizada y variable con la que podrás probar la mayoría de los circuitos que decidas construir.

No tendrás dificultades para llevar a cabo su montaje. Los componentes usados son muy baratos y con los márgenes que dispone tendrás suficiente para poner en marcha la mayoría de tus proyectos.

Leer más...

Electromagnetismo (II)

Existen personas con las cuales nos sentimos muy a gusto. Son capaces de transmitirnos penas y alegrias, transmitirnos la risa y las lágrimas, transmitirnos piedad, dolor, afecto, cariño, amistad y muchas otras cosas. En definitiva lo que verdaderamente ocurre con ellas es que tienen UN MAGNETISMO ESPECIAL que las hace únicas y por esa razón SON CAPACES DE TRANSMITIR Y CONTAGIARNOS ciertos sentimientos. ¿Has visto que hemos hablado de un determinado tipo de magnetismo (el personal), y que hemos hecho ver que gracias a él se pueden transmitir y se pueden contagiar algunos sentimientos? Está mas que demostrado que esto que hemos dicho es completamente cierto.

Las preguntas que cabe hacernos en conformidad con la exposición anterior es... ¿Será posible transmitir o contagiar el flujo magnético producido por un imán permanente, o el producido por un solenoide o bobina recorrida por una corriente eléctrica, a otro cuerpo al que expongamos a dicho flujo? ¿Que efectos pueden obtenerse al hacer esto en el cuerpo al que hemos transmitido el magnetismo? ¿Que aplicaciones prácticas podría tener la transmisión del flujo magnético? Esta y otras preguntas van a ser respondidas en este artículo.

INDUCCION Y PERMEABILIDAD MAGNÉTICAS
La verdad es que en un artículo anterior ya respondimos a la primera pregunta. En dicho artículo dijimos que las propiedades magnéticas de un imán pueden transmitirse a un trozo de hierro o acero que antes no tenía dichas propiedades, simplemente acercando el trozo de hierro al imán y exponiéndolo a su campo magnético. También dijimos que el magnetismo adquirido por este cuerpo tiene un nombre y se llama "magnetismo remanente". Lo que aún no hemos dicho es el nombre que recibe el fenómeno por el que el hierro o el acero adquieren propiedades magnéticas al estar expuestos al flujo que emana de un imán o un solenoide: dicho fenómeno recibe el nombre de INDUCCIÓN MAGNÉTICA.

Es interesante resaltar que cuando esto ocurre y acercamos el hierro al imán, el flujo magnético de este último sufre una perturbación. Si nos ayudamos por las consabidas limaduras de hierro para poner de manifiesto dicho flujo al acercarle el trozo de hierro al imán, podremos observar como las lineas de fuerza del imán modifican su trayectoria normal para introducirse por el trozo de hierro. Es como si las lineas de fuerza del imán PREFIRIERAN pasar a través del trozo de hierro antes que seguir el camino mas corto, el camino normal, a través del aire. El flujo magnético que atraviesa el trozo de hierro es muy superior al que existe en la zona de aire que circunda al imán.

Este fenómeno sucede así porque el hierro es mas PERMEABLE que el aire al flujo magnético. Se dice entonces que una determinada sustancia será más o menos PERMEABLE en función de la cantidad de flujo magnético que deje pasar a su través. Por lo tanto, si se da la circunstancia de que coloquemos un cuerpo extraño cerca del flujo magnético de un imán, éste modificará sus lineas de fuerza canalizándolas a través del cuerpo extraño mencionado dependiendo de la mayor o menor PERMEABILIDAD MAGNÉTICA que presente dicho cuerpo.

INDUCCION ELECTROMAGNÉTICA
En este apartado vamos a seguir analizando el experimento que realizamos en el artículo anterior, en el que obtuvimos una corriente eléctrica por acción del magnetismo de un imán ¿lo recuerdas? (Si no, mira la ilustración adjunta). Cuando movíamos el hilo de cobre rígido y "cortábamos" con él las lineas de fuerza del imán, resulta que el instrumento de medida acusaba el paso de una corriente eléctrica. Recuerda que es absolutamente necesario que exista movimiento relativo entre el conductor rígido de cobre y el imán, de lo contrario no se produce ninguna corriente eléctrica aunque dejemos el hilo rígido inmóvil dentro del campo magnético del imán. Dicho sea de paso, la corriente que se produce gracias a esto se llama CORRIENTE INDUCIDA.

Lo que hemos dicho en el párrafo anterior tiene mucha miga, aunque parezca algo sencillo. Vamos por partes. La primera pregunta que se nos ocurre es... ¿de que depende la magnitud de la corriente inducida? No debe depender solo de la potencia del imán, ya que por muy potente que éste sea si dejamos el conductor rígido de cobre inmóvil dentro de su flujo magnético no se producen corrientes inducidas. Sin embargo, si el flujo magnético varía si que aparece la corriente. Por lo tanto, dicha corriente inducida depende en primer lugar de las variaciones de flujo magnético. Lógicamente, cuanto mayor sea la potencia del imán más grandes serán estas variaciones de flujo al mover el conductor por lo que las corrientes inducidas serán mayores.

Ahora bién... Si la magnitud de las corrientes inducidas son proporcionales a las variaciones del flujo magnético ¿Como podríamos aumentar estas variaciones para obtener una corriente mayor si no disponemos de un imán más potente? Solo hay una respuesta lógica para esta pregunta y es simplemente mover el conductor rígido con más velocidad, más rápidamente. Efectivamente; podemos concluir que EL VALOR DE LA CORRIENTE INDUCIDA ES DIRECTAMENTE PROPORCIONAL A LA RAPIDEZ CON QUE VARIE EL FLUJO. Esto lo podemos comprobar fácilmente con solo mover nuestro conductor rígido a una velocidad mayor dentro del imán, con lo que las oscilaciones de la aguja del galvanómetro (nombre con que se designa de forma general al instrumento para medir corrientes eléctricas) serán mayores.

Fíjate ahora en una cosa que se me antoja muy interesante. ¿Te has dado cuenta que el conjunto formado por nuestro conductor rígido, los cables flexibles y el instrumento de medida forman un bucle o circuito cerrado? ¿No te recuerda esto, salvando las diferencias, a la espira de una bobina o solenoide? ¡Claro que si! Efectivamente nuestro circuito se comporta exactamente como eso, como una espira. Ahora la pregunta que cabe hacerse es... ¿Podemos aumentar el numero de espiras para aumentar las corrientes inducidas?. La respuesta es... ¡Por supuesto que SI!. Tenemos pués un tercer parámetro para aumentar la corriente inducida sin necesidad de aumentar la potencia del imán ni la rapidez del movimiento de nuestro conductor rígido... ¡Aumentar el numero de espiras de nuestra bobina para que se sume el efecto que produce cada una de ellas!. La fuente magnética que utilizaremos en este último caso será el conocido imán de barra (ver dibujo adjunto) para que lo podamos introducir por el interior de nuestra bobina. Recuerda lo que hemos estudiado ya sobre este tema: da lo mismo que se mueva una cosa o la otra, la cuestión es que exista una variación del flujo magnético en las espiras de nuestra bobina. En este caso lo que se mueve es el imán. Puedes ver una simulación animada pinchando aquí.

Resumamos lo visto hasta ahora. Hemos comprobado que las corrientes inducidas dependen:

De la potencia del imán. Cuanto más potente sea éste mayor será su flujo magnético y por lo tanto también será mayor la variación que se produzca al pasar el hilo rígido de una posición de flujo nulo a otra de flujo máximo.

De la rapidez con que se mueva el hilo dentro del flujo del imán (o viceversa). Cuanto más rápido movamos el hilo dentro del campo magnético del imán mayor será el numero de lineas de fuerza que "cortemos" en la misma unidad de tiempo. (Esto es más facil de entender con un ejemplo. Supongamos que en principio "cortamos" 100 lineas de fuerza en 1 segundo con lo que obtenemos una corriente inducida determinada. Ahora, si movemos el cable rígido el doble de rápido lograremos "cortar" las 100 lineas de fuerza en solo 1/2 segundo, por lo que al cabo de un segundo resulta que habremos duplicado el numero de lineas de fuerza atravesadas llegando a las 200. La corriente inducida también se duplica.)

Del número de espiras. Cuantas más espiras tenga nuestro solenoide más capacidad de producción de corrientes inducidas tendrá nuestro invento. Será como multiplicar lo que obtenemos con una sola espira por el numero de ellas que hayamos devanado en nuestra bobina.

Algo que deberemos siempre recordar es que si se inmoviliza el imán con respecto a la bobina NO SE PRODUCIRÁN CORRIENTES INDUCIDAS al no existir variaciones del flujo magnético en las espiras del solenoide.

OTRA FORMA DE INDUCCIÓN
Hasta el momento hemos visto que para producir corrientes inducidas, o el imán o el solenoide debían moverse para conseguir que las variaciones del flujo magnético alcanzaran a la bobina. En este punto surge una pregunta: ¿Podría existir alguna manera de producir un flujo magnético variable sin necesidad de la intervención de un imán móvil? En el artículo anterior, cuando hablamos de los solenoides o bobinas dijimos que cuando circula corriente a través de ellos se comportan como verdaderos imanes. ¿Se podría entonces utilizar una bobina a modo de imán para inducir corrientes en otra bobina colocada a su lado?. La respuesta es afirmativa, siempre que la corriente que utilicemos en la bobina inductora sea una corriente variable para que el flujo que cree sea también variable y pueda inducir corrientes en la otra bobina. Vamos a verlo con un ejemplo.

Fíjate en el dibujo adjunto. Se trata de un circuito en el que tenemos una pila, un interruptor y una bobina conectada a ellos llamada bobina primaria. Después, conectada a un galvanómetro y pegada a la anterior, tenemos otra bobina llamada bobina secundaria. Ahora vamos a conectar y desconectar el interruptor lo más rápido que podamos y vamos a repetir estas acciones constantemente para crear una corriente variable en la bobina primaria, lo que a su vez creará un flujo magnético variable en dicha bobina. Ese flujo magnético variable afectará a la bobina secundaria e inducirá en ella una corriente eléctrica. Mediante el galvanómetro podremos comprobar la existencia de dicha corriente. El efecto es similar a cuando movemos el imán por el interior de la bobina.

Aunque sea adelantarnos a nuestro estudio, te diré que acabo de enseñarte el principio del TRANSFORMADOR, el cuál estudiaremos profundamente en próximos artículos. A la bobina primaria se le llama también INDUCTOR o devanado PRIMARIO. A la bobina secundaria se le conoce como INDUCIDO o devanado SECUNDARIO. Entre el primario y el secundario existe lo que se llama INDUCCIÓN MUTUA ya que esta situación es reversible, es decir, el secundario puede actuar como primario si le conectamos la pila y el interruptor y el primario actuará en este caso de secundario desarrollando la corriente inducida.

Para finalizar este artículo, vamos a estudiar la forma de inducción electromagnética que, lo queramos o no, está siempre presente en una bobina o solenoide cuando es recorrida por algún tipo de corriente eléctrica y aunque su campo magnético no influya en ningún otro cuerpo cercano.

LA AUTOINDUCCIÓN
Aunque ya lo hemos dejado muy claro lo volvemos a repetir: Cuando un conductor es alcanzado por un campo magnético variable sufre como consecuencia una inducción. Y como es nuestra costumbre hacernos preguntas sobre lo que ya hemos estudiado, en esta ocasión no vamos a faltar a la cita y nos preguntamos lo siguiente: ¿Es posible que en una bobina, sus espiras puedan inducir magnetismo a las espiras cercanas de la propia bobina? La idea no es en absoluto descabellada y sería lógico pensar que el magnetismo producido por cada una de las espiras de la bobina debería influir en las espiras colocadas antes y después e incluso en ella misma, ya que al fin y al cabo se trata del mismo magnetismo con el que hemos inducido corrientes en otra bobina y que forzosamente debería influir en la propia bobina que está produciendo ese magnetismo ¿No crees?.

Pués decirte que crees bién. Cada una de las espiras de una bobina están influidas por el campo magnético producido por las espiras anterior y posterior a ella. En resumidas cuentas podemos decir que todas las espiras que componen una bobina sufren el efecto de inducción provocado por el campo magnético que ellas mismas producen. Si la corriente que circula por la bobina varia, se producirá una inducción magnética en ella misma similar a la que le produce a una bobina secundaria. Como la causa y el efecto se producen en una misma bobina, podemos decir que ella se lo guisa y ella misma se lo come, el fenómeno descrito se conoce como AUTOINDUCCIÓN.

La autoinducción crea una nueva fuerza electromotriz que es mas acusada cuanto mas espiras contenga el devanado y cuanto mas pegadas estén aquellas. En los hilos conductores normales, sin bobinar, la autoinducción es mínima ya que no existen espiras que la creen. Para poder medir el nivel de autoinducción se ha creado el concepto de INDUCTANCIA (algunos lo conocen como COEFICIENTE DE AUTOINDUCCIÓN). La inductancia eléctrica tiene como unidad el HENRIO y sus submúltiplos son el MILIHENRIO y el MICROHENRIO. A las bobinas creadas para usar su autoinducción en los circuitos electrónicos se les conoce también como inductancias. Así hablamos de una inductancia de 1,5 milihenrios para referirnos a una bobina que presenta ese nivel de autoinducción. Cuantas más espiras tenga una bobina más elevada será su inductancia, aunque ésta última depende de otros factores que ya estudiaremos.

Hablemos ahora del efecto que una inductancia produce en un circuito eléctrico. Se puede decir que la inductancia es el espíritu mismo de la contradicción... ¿que porqué?. Pués sencillamente porque en cualquier circunstancia se opone a los cambios de corriente en el circuito donde están montadas. Al decir esto me refiero a que cuando la intensidad de corriente en el circuito aumenta, la f.e.m. que ya hemos dicho que se crea por autoinducción en la propia inductancia, crea una CORRIENTE INVERSA que anula en parte el aumento original. A la inversa, si la corriente a través del circuito disminuye, la f.e.m. autoinducida crea una CORRIENTE DEL MISMO SENTIDO que la original de manera que tiende a impedir que dicha corriente original disminuya.

Podemos ilustrar esto muy adecuadamente comparándolo con la INERCIA que se estudia en física. Como seguramente sabrás, la inercia es la tendencia de los cuerpos a permanecer en el estado en que actualmente se encuentran, de manera que si un cuerpo se encuentra en movimiento tiende a seguir en movimiento, y si se encuentra en reposo tiende a seguir en reposo. Por lo tanto, para modificar el estado de un cuerpo (seguimos hablando de física) se necesita que una fuerza actúe sobre el, bién para pararlo si está en movimiento, bién para iniciar la marcha si está inmóvil. Además, un cuerpo inmóvil no adquiere su máxima velocidad de forma instantanea sino que necesita un período de tiempo para alcanzarla, lo mismo que un cuerpo en movimiento siempre alcanza el estado de reposo después de un intervalo de tiempo y nunca de manera súbita.

Esto es muy parecido a lo que ocurre con la autoinducción de las bobinas por lo que podemos decir que ésta es como la inercia de la electricidad. Cuando se conecta una batería a un circuito en el que existe una inductancia la corriente no llega a su nivel máximo de forma instantanea, sino que lo hace después de un periodo de tiempo que depende del valor de la inductancia ya que ésta última crea una f.e.m. que se opone a la de la batería. Cuando desconectamos la batería del circuito anterior, la inductancia creará una f.e.m. para tratar de mantener la corriente que hasta ahora circulaba por el circuito.

Aquí damos por terminado este interesante artículo. Mas adelante, cuando estudiemos los circuitos resonantes (ya veremos lo que son y para que sirven), seguiremos aprendiendo mas cosas sobre los solenoides. Nos vemos en nuestro próximo artículo.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +