Acceso



Registro de usuarios
Otros Temas Interesantes
Contáctenos
Teoría
Protección contra sobretensiones

Todo aquel que ha estado reparando equipos de radio durante cierto tiempo sabe que en multitud de ocasiones llegan al SAT los clásicos "cadáveres" que han sufrido una sobretensión.

Normalmente, la gran mayoría de estos equipos vienen protegidos de origen contra inversiones de polaridad, siempre que se le respete el valor al fusible... ¡claro!, pero no todos vienen con una protección contra sobretensiones.

Para aclararle el significado del término a aquellos que no sepan que significa "sobretensión", se trata de aplicarle a la emisora una tensión de polaridad correcta pero bastante más elevada que la nominal. Por ejemplo, "meterle" los 24 voltios de las dos baterías de un camión en vez de los 12 o 13 voltios necesarios.

Y antes dije cadáveres (entre comillas) porque, para desgracia para su dueño, cuando acontece esta vicisitud provoca un verdadero desastre en el aparato; etapas de potencia de audio, finales y drivers de RF, reguladores, etc... Generalmente la sobretensión arrasa con todo, incluida la billetera de su propietario.

Parece mentira pero, como en muchas otras situaciones de la vida, los accidentes más graves podrían reducirse a cero con un costo mínimo y con algo más de previsión.

Si deseas saber como prevenir una sobretensión en tu equipo de radio, de una manera muy simple, lee el resto de este artículo.

Leer más...
Noticias
48 Lecciones de Radio (Jose Susmanscky) Tomo 1

Tomo 1 de esta vieja pero extraordinaria colección de información sobre radio.

Escrita con un lenguaje sencillo, a poco cuidado que se ponga en su lectura se adquirirán los conocimientos básicos necesarios para el estudio de la electrónica y la radio. Estos libros son un clásico que hay que tener y hay que leer. En este tomo se estudian temas como el magnetismo, condensadores, ley de Ohm, resistencias, corriente alterna, recepción de señales de radio, etc...

Leer más...
Radioaficionados
Montar una antena de móvil (II)

Continuamos con el montaje de nuestra antena de móvil. En el artículo anterior vimos la necesidad de que la antena de móvil disponga de un buen plano de tierra ya que de lo contrario tendremos muchos problemas de desadaptación y por lo tanto la relación de ondas estacionarias (ROE) se nos va a disparar. Hemos aprendido que, si no tenemos un buen plano de tierra tendremos que "crear" uno incorporandole a la parte interior del techo o capó del vehículo una superficie metálica de 30 x 30 centímetros o más (sirve por ejemplo una chapa de aluminio) y con las uñas de la "araña" de la base de la antena bien hundida en ella para lograr un contacto eléctrico adecuado.

Pero queda aún por aclarar algunos detalles de la instalación si queremos que nuestro equipo funcione de la mejor manera posible. ¿Que haremos si aparece ruido del motor? ¿Como puedo anular o reducir ese infernal ruido que se produce al arrancar y que aumenta conforme pisamos el acelerador? ¿Puedo conectar la alimentación de la emisora a la toma de mechero del vehículo? ¿Como ajusto la antena y le reduzco la relación de ondas estacionarias (ROE) al sistema? ¿Tengo que cortar necesariamente la varilla de la antena para que funcione mejor? ¿Es cierto que cortando (o añadiendo) cable coaxial puedo ajustar la ROE? Todo esto y más en el siguiente artículo.

Leer más...
Miscelanea
Detector de OVNIS (UFO Detector)

A veces nos encontramos con circuitos que nos sorprenden por su simplicidad y por la efectividad con que realizan su trabajo. En este dia hemos querido publicar uno de estos montajes tan atractivos para muchos entusiastas de la electrónica y, al mismo tiempo, aficionados a la llamada "UFOLOGIA".

Presentamos en esta ocasión los detalles técnicos de un equipo de muy fácil construcción con el que podremos detectar en las inmediaciones la existencia de OVNIs (Objetos Volantes No Identificados), también llamados en inglés UFOs (Unidentified Flying Object).

Se ha demostrado que dichos objetos producen picos de energia electromagnética que pueden ser recibidos por circuitos amplificadores con entrada de alta impedancia. Es precisamente este tipo de circuito el que te proponemos como miscelánea y despedida del año 2015.

Los materiales usados para llevar a cabo este montaje son baratos y muy corrientes. Por lo tanto, te serán facilmente localizables en el mercado. ¿Te atreverás a detectar la presencia de OVNIS con él?.

Leer más...
Práctica
Monitor para fusible

Con relativa frecuencia nos ocurre que, cuando de golpe nuestro equipo electrónico deja de funcionar, en principio nos asaltan las dudas y la desorientación por desconocer el motivo del contratiempo.

No obstante, en multitud de ocasiones pasa que el inconveniente lo produce un fusible que, bien por envejecimiento o por cualquier otra causa puntual, ha fundido y ha dejado sin alimentación al circuito.

Para que salgamos de dudas de forma inmediata, sin necesidad de desmontar ni un solo tornillo del aparato en cuestión, podemos instalarle este sencillo monitor que nos confirmará mediante un simple diodo LED si efectivamente se trata del fusible de protección que ha saltado.

¿Crees que resultará muy complicado llevar a cabo este montaje?... Para darte una pista te diremos que, en su versión de baja tensión, solo está compuesto del mencionado diodo LED y su correspondiente resistencia limitadora.

¿Verdaderamente crees que será dificil llevar a la práctica este dispositivo?. Sigue leyendo y verás que apenas tiene dificultad.

Leer más...
Teoría
El amperio

En el artículo anterior hemos relacionado la cantidad de cargas eléctricas (electrones) que circulan por un determinado punto de un circuito con el tiempo. Es lo que hemos quedado en llamar "intensidad de corriente eléctrica". De esta manera pordemos decir, por ejemplo, que por un conductor circulan 36 culombios por cada hora transcurrida con lo que estamos expresando el "caudal" de la corriente eléctrica, o dicho técnicamente su intensidad. Sin embargo, en electrónica no se utiliza esta manera de medir la intensidad de corriente ya que tendríamos que manejar dos parámetros, la carga y el tiempo, cosa que es engorrosa,  incómoda y muy poco adecuada.

Lo que se hace en la práctica es utilizar una unidad que englobe y combine a ambos, tanto a la carga como al tiempo, ya que ambos están íntimamente ligados cuando hablamos de una corriente eléctrica al tratarse esta de electrones (cargas) en movimiento (tiempo). La unidad que se utiliza universalmente para medir la intensidad de una corriente eléctrica es el AMPERIO, bautizado así en honor al matemático y físico francés André-Marie Ampère considerado como uno de los descubridores del electromagnetismo. En este artículo vamos a explicar que es exactamente el amperio, que instrumento necesitamos para medirlo y cual es la manera correcta de colocar este instrumento en un circuito. ¿Nos sigues?

Leer más...
Noticias
Videotutorial del calculador para Ebay

Para aquellos que nos han trasladado sus consultas relativas a las dudas con el manejo de nuestro calculador de precios y comisiones de venta para Ebay España, aquí tenéis este videotutorial en HD mediante el cual estamos seguros que vais a despejar todas vuestras lagunas.

Esperamos con esto ayudaros con vuestras ventas a través de Ebay España, seáis particularesvendedores profesionales.

Leer más...

Las válvulas de vacío II

Una vez que hemos visto la manera en que podemos desarrollar por medios eléctricos el efecto termoiónico, entramos de lleno ahora en la descripción de las válvulas de vacío, las cuales fueron en su tiempo el máximo exponente del citado fenómeno físico en lo que toca a la recepción y emisión de señales de radio entre otras aplicaciones.

Comenzaremos hablando del llamado diodo termoiónico, componente muy usado en los tiempos de los receptores a válvulas como rectificador en fuentes de alimentación y demodulador de señales de R.F. entre otros aspectos, aunque aquí no acaban todas sus aplicaciones.

El diodo termoiónico, también conocido como diodo de vacío, puede considerarse la válvula más elemental y sencilla de todas las que han existido. Fundamentalmente se trata de una ampolla de vidrio completamente cerrada, dentro de la cual se ha practicado el vacío, o sea, que se le ha extraído todo el aire de su interior.

Dispone de dos electrodos, como puede deducirse de su nombre ("di-odo" del griego "dos caminos"), uno llamado ánodo y el otro llamado cátodo, tal y como ocurre en el caso del diodo semiconductor.

Inventada por el físico británico John Ambrose Fleming a principios del siglo pasado, para muchos la invención de aquella primera válvula termoiónica supuso a la sazón el inicio de la era electrónica.

En un principio el cátodo de esta válvula estaba formado por un hilo metálico resistente, al cual se le han soldado dos hilos de un material buen conductor los cuales salen al exterior a través del cristal. Justo frente a él, dentro de la ampolla, se ha colocado una placa metálica, la cual también tiene soldado un hilo conductor que sale al exterior a través del vidrio de la ampolla.

El hilo metálico resistente se llama filamento y, solo en este caso como veremos posteriormente, hace las veces de cátodo del diodo. Es decir, en este tipo de válvula primeriza el propio filamento también es el cátodo. Por este motivo, a esta clase particular de diodo termoiónico se le conoce como diodo de caldeo directo.

La placa metálica, conocida simplemente como "placa", es el ánodo del diodo. A todo el conjunto, incluida la ampolla de vidrio, se le llama diodo termoiónico o de vacío.

Podemos ver el símbolo electrónico utilizado para representar a este diodo en la ilustración que incluimos.

Mas adelante hablaremos de otro tipo de válvula diodo perfeccionada con respecto a esta, la cual está exenta de los inconvenientes que sí tenía la primera debido a que usaba el propio filamento de cátodo, propiciando así la aparición de ciertos problemas si no se tomaban las debidas precauciones.

Tal y como hemos mencionado en la introducción, a los electrodos del diodo termoiónico se les llama de idéntica forma que a los del diodo semiconductor.

Esto es así debido a que sus comportamientos son del todo similares en uno y en otro caso como vamos a ver a continuación.


COMPORTAMIENTO DEL DIODO DE VACÍO

Efectivamente, el diodo termoiónico realiza la misma función que un diodo de cristal o semiconductor. Por ejemplo, puede funcionar como detector, ya que solo permite el paso de corriente en un sentido.

Para comprobar esto vamos a construir un pequeño circuito con solo unos pocos componentes. Montaremos una válvula diodo junto a un amperímetro de corriente contínua con la configuración que vemos en la figura adjunta.

Al filamento (cátodo) le conectaremos una batería capaz de calentarlo lo suficiente para producir en él el efecto termoiónico, y de esta manera que sea capaz de emitir electrones abundantemente (generalmente ha de ponerse al rojo vivo).

Entre uno de los terminales del cátodo o filamento y la placa del diodo, conectaremos otra batería en serie con el amperímetro.

En principio, el borne positivo de esta otra batería, la cual es de una tensión elevada (por lo general mayor de 100 voltios), lo conectaremos a la placa a través de dicho amperímetro. El negativo de la batería lo conectaremos por su parte a uno cualquiera de los terminales del cátodo.

Con esta batería así conectada, la placa resulta ser positiva con respecto al cátodo y produce una irresistible atracción sobre los electrones que salen de este último. El cátodo, por lo tanto, cede estos electrones a la placa a través del vacío creado dentro de la ampolla, sin que absolutamente nada se interponga en su camino.

A propósito de lo anterior cabe decir aquí que es lógico que, para que el diodo funcione correctamente, se tenga que efectuar el vacio en su interior, ya que de lo contrario las propias moléculas de aire constituirían un verdadero obstáculo para los electrones viajeros que intentasen alcanzar la placa positiva.

Si no se hiciera el vacío dentro de la ampolla de cristal los electrones bombardearían a las moléculas de aire de su interior y se verían seriamente frenados. Incluso su trayectoria se desviaría y se impediría que llegaran a su destino, la placa o ánodo, por lo que el funcionamiento del diodo sería defectuoso.

Sigamos adelante una vez aclarado el punto. De la manera que anteriormente hemos explicado, se establece un flujo de electrones que va del cátodo a la placa por dentro de la válvula y desde la placa al cátodo por el circuito exterior a esta, atravesando amperímetro y batería para acabar de nuevo en su ubicación original.

Podemos comprobar la existencia de esta corriente eléctrica con solo mirar el amperímetro, el cual da buena cuenta de ella mediante el desplazamiento de su aguja.

Ahora vamos a invertir la polaridad de esta batería. Su polo negativo lo conectaremos a la placa de la válvula a través del amperímetro, mientras que su polo positivo lo vamos a conectar a uno de los extremos del cátodo (ver ilustración).

En estas circunstancias la placa adquiere polaridad negativa con respecto al cátodo. Los electrones que logran salir despedidos del cátodo debido al efecto termoiónico vuelven otra vez a él, ya que son repelidos por la carga negativa que la placa tiene con respecto al cátodo, al tiempo que son atraidos por este último al tener carga positiva con respecto a la placa. Los electrones no pueden en esta ocasión atravesar el vacío que separa cátodo y ánodo.

Por este motivo, ahora el amperímetro no marcará el paso de absolutamente ninguna corriente eléctrica, permaneciendo su aguja a la izquierda, señalando al cero. La intensidad de corriente a través del circuito es ahora completamente nula.

Con esto queda demostrado que el diodo termoiónico conduce interiormente solo en un sentido, desde el cátodo hacia la placa, y solo cuando al primero lo polarizamos negativamente con respecto a la segunda, que tendrá que ser positiva.


ALGUNAS CONSIDERACIONES

Cuando polarizamos al diodo de vacío de forma inversa, haciendo la placa negativa con respecto al cátodo, los electrones que salen de este último vuelven a él debido al campo eléctrico creado entre los dos electrodos. Son repelidos por el potencial negativo de la placa y atraidos por el positivo del cátodo.

En ese momento, el número de electrones que salen del cátodo es igual al número de los que vuelven a él, formándose a su alrededor una verdadera "nube de electrones", donde coexisten tanto los que salen como los que entran. A esta "nube" de cargas negativas se la conoce como "carga espacial" o "carga de espacio".

Son precisamente los electrones de la carga espacial del cátodo los que la placa, cuando es positiva con respecto a aquél, atrae hacia ella para producir la corriente a través del diodo. A esta corriente, que pudimos medir con el amperímetro en el experimento anterior, se le conoce como corriente de placa.

Otro punto importante a tener en cuenta es que, a los diodos de caldeo directo, es decir, los que hemos estudiado hasta el momento, había que calentarle el filamento con corriente continua, ya que al ejercer este al mismo tiempo de cátodo, el rizado de la corriente alterna podía transmitirse a la corriente de placa, provocando un zumbido indeseable.

Para evitar este efecto y hacer al cátodo del diodo completamente independiente de su filamento, aparecieron los llamados diodos de caldeo indirecto.

En estos últimos tubos de vacío, el filamento queda recubierto por un pequeño cilindro metálico que resulta ser el verdadero cátodo. Este cilindro es calentado por el filamento, sin que exista ningún tipo de contacto entre ellos, y es el encargado de provocar la emisión de electrones. En este caso el filamento única y exclusivamente ejerce la función de elemento calefactor.

El funcionamiento del diodo termoiónico de caldeo indirecto es mucho más seguro y fiable que el de su predecesor. En la ilustración adjunta puedes ver su símbolo.

Aquí vamos a parar por el momento el estudio de estas válvulas termoiónicas. Como ves, la profundidad en la que nos hemos zambullido es escasa, ya que creemos que debido a que su uso en la actualidad no es masivo, un estudio más profundo de estos componentes electrónicos carecería de interés práctico.

Hasta la próxima, nos vemos aquí en Radioelectronica.es, tu punto de encuentro.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +