Acceso



Registro de usuarios
Otros Temas Interesantes
Contáctenos
Teoría
El amperio

En el artículo anterior hemos relacionado la cantidad de cargas eléctricas (electrones) que circulan por un determinado punto de un circuito con el tiempo. Es lo que hemos quedado en llamar "intensidad de corriente eléctrica". De esta manera pordemos decir, por ejemplo, que por un conductor circulan 36 culombios por cada hora transcurrida con lo que estamos expresando el "caudal" de la corriente eléctrica, o dicho técnicamente su intensidad. Sin embargo, en electrónica no se utiliza esta manera de medir la intensidad de corriente ya que tendríamos que manejar dos parámetros, la carga y el tiempo, cosa que es engorrosa,  incómoda y muy poco adecuada.

Lo que se hace en la práctica es utilizar una unidad que englobe y combine a ambos, tanto a la carga como al tiempo, ya que ambos están íntimamente ligados cuando hablamos de una corriente eléctrica al tratarse esta de electrones (cargas) en movimiento (tiempo). La unidad que se utiliza universalmente para medir la intensidad de una corriente eléctrica es el AMPERIO, bautizado así en honor al matemático y físico francés André-Marie Ampère considerado como uno de los descubridores del electromagnetismo. En este artículo vamos a explicar que es exactamente el amperio, que instrumento necesitamos para medirlo y cual es la manera correcta de colocar este instrumento en un circuito. ¿Nos sigues?

Leer más...
Noticias
Revista 27 MHz - Fascículo 6

Fascículo Nº 6 de la revista "27 MHz" dedicada a la CB (Banda Ciudadana).

Leer más...
Radioaficionados
Preamplificador de micro para emisoras

De todos es sabido la cantidad de micrófonos preamplificados que invaden el mercado destinado a la C.B. (Banda Ciudadana o 27 MHz.). Unos los vemos en versión "de sobremesa" y otros en versión "de mano". Algunos de estos micrófonos dicen poseer un "compresor" para de esta manera conseguir una modulación profunda que permita obtener el máximo rendimiento de nuestra emisora. Otros publican su producto como provisto de un estupendo "limitador de audio" para así obtener el mismo o parecido resultado.

Sin embargo, son pocos los que saben que los compresores o limitadores de audio incorporados en los micrófonos son accesorios que aportan muy poco a la mejora del rendimiento de las emisoras de radioaficionado, sobre todo si se conectan a equipos de cierta calidad técnica como ocurre con la Superstar 3900. ¿Te sorprende esta afirmación? La pregunta ahora es... ¿Sabes por qué? Sigue leyendo este artículo y te enterarás no solo de la respuesta a esta pregunta, sino también de como hacer un preamplificador de audio para micrófono verdaderamente eficaz, diseñado con solo un par de transistores y sin embargo dotado de unas características excepcionales, y como incorporárselo a tu emisora de manera que le subas el rendimiento hasta el máximo posible.

Leer más...
Miscelanea
Sencillo VU-Meter a diodos LED

Lejos quedan aquellos tiempos en los que todos los medidores, y al decir todos me refiero a TODOS, estaban construidos mediante un galvanómetro y la lectura se realizaba con una aguja que parecía deslizarse al recorrer una escala graduada.

A decir verdad, para aquellos que en cierta manera somos de "la vieja escuela", los referidos medidores, midieran lo que midieran, tenían un encanto muy especial y podría decirse que sentimos "morriña" cuando los recordamos, como diría un gallego al estar lejos de su tierra y escuchar el sonido de una gaita.

Pero llegaron los diodos LED y se hizo la luz. Desde entonces, son muchos y muy variados los VU-Meters, vúmetros o medidores de unidades "VU" (del inglés Volume Unit) que se han desarrollado incorporando este componente electrónico, sobre todo usando la tecnología de la integración.

Pero en este artículo no vamos a publicar la información técnica para construir uno de estos instrumentos con los clásicos circuitos integrados UAA170 o UAA180 ni con cualquier otro. Tampoco vamos a enseñarte a conectar esas "barritas" LED con diferentes diseños. ¡Con ellas practicamente lo tienes todo hecho!.

En este artículo vamos a enseñarte como construir un VU-Meter LED con componentes discretos. ¡Dale ya al "Leer completo..." para saber más!.

Leer más...
Práctica
Monitor para fusible mejorado

En un artículo anterior de nuestro blog ya abordamos un montaje titulado "Indicador de fusible fundido" mediante el cual tuvimos la oportunidad de estudiar el multivibrador astable.

Posteriormente publicamos otro artículo titulado "Monitor para fusible", en el que presentábamos un circuito mucho más simple que el primero, que iluminaba un led cuando el fusible fundía.

Sin ánimo de ser insistente, os queremos presentar ahora este otro monitor algo más sofisticado que el segundo y menos complicado que el primero, mediante el cual podemos saber de un vistazo si nuestro aparato electrónico está recibiendo la alimentación adecuada, o por contra, está interrumpida por culpa de un fusible defectuoso.

En esta ocasión usaremos un doble diodo LED con cátodos comunes. El encendido del LED de color verde (¡PERFECTO!) nos indicará el funcionamiento correcto del dispositivo, mientras que si el LED que luce es el de color rojo (¡ALARMA!) querrá decir que el fusible está interrumpido.

Debido a la extremada sencillez del circuito creemos que merece la pena integrarlo en alguno de nuestros montajes, según consideremos o no la necesidad o conveniencia de que incorpore la mencionada indicación.

Clica en "Leer completo..." para ver más detalles.

Leer más...
Teoría
El magnetismo - Imanes

Todos sabemos lo que es un imán (no me refiero a ese señor que dirige la oración en el Islam). Está claro que el ser humano llegó a conocer el magnetismo gracias a los imanes, sin los cuales no sabemos en que estado estarian hoy en dia las cosas. Pero a pesar de que los imanes sean objetos tan conocidos por la mayoría podemos decir que también son grandes desconocidos... ¿que porqué?... pues porque conocemos de sobra los efectos que pueden llegar a producir y sin embargo no sabemos prácticamente nada de la causa por la que ocurren. Es decir, todos sabemos que un imán atrae a otros cuerpos metálicos de hierro y acero pero son pocos los que saben "como rayos lo hace". ¿Cual es la fuente de esa atracción tan llamativa?.

Imagina que eres el padre de Pedrito. Pedrito es un niño muy listo que un buen dia conoce la existencia de los imanes. Como Pedrito tiene muchas inquietudes comienza a investigar y en medio de esas investigaciones te asalta cuando llegas del trabajo y te pregunta... ¡¡Papi, papi...!! ¿Porqué los imanes se pegan al hierro?. Entonces tu vas y le respondes al niño... ¡Porque son magnéticos!. El niño no entiende nada y entonces pregunta otra vez... ¿Y que significa ser magnético?... Te quedas algo confuso con la pregunta pero respondes... ¡¡Pues que tienen magnetita!!. El niño te mira con algo de recelo, y un poco mosca de nuevo te pregunta... ¿Y porqué la magnetita se pega al hierro?. Tu ya casi no sabes que responder y le dices... ¡Por la fuerza magnética que tiene!. El niño, muy serio, se queda ahora mirándote sin parpadear, como si se oliera que no tienes ni idea, y te hace la pregunta definitiva... ¿Y como funciona esa fuerza magnética para hacer que el imán se quede pegado al hierro?... Mejor que leas este artículo antes de seguir contestándole al niño.

Leer más...
Noticias
Revista 27 MHz - Fascículo 9

Fascículo Nº 9 de la revista "27 MHz" dedicada a la CB (Banda Ciudadana).

Leer más...

Las válvulas de vacío II

Una vez que hemos visto la manera en que podemos desarrollar por medios eléctricos el efecto termoiónico, entramos de lleno ahora en la descripción de las válvulas de vacío, las cuales fueron en su tiempo el máximo exponente del citado fenómeno físico en lo que toca a la recepción y emisión de señales de radio entre otras aplicaciones.

Comenzaremos hablando del llamado diodo termoiónico, componente muy usado en los tiempos de los receptores a válvulas como rectificador en fuentes de alimentación y demodulador de señales de R.F. entre otros aspectos, aunque aquí no acaban todas sus aplicaciones.

El diodo termoiónico, también conocido como diodo de vacío, puede considerarse la válvula más elemental y sencilla de todas las que han existido. Fundamentalmente se trata de una ampolla de vidrio completamente cerrada, dentro de la cual se ha practicado el vacío, o sea, que se le ha extraído todo el aire de su interior.

Dispone de dos electrodos, como puede deducirse de su nombre ("di-odo" del griego "dos caminos"), uno llamado ánodo y el otro llamado cátodo, tal y como ocurre en el caso del diodo semiconductor.

Inventada por el físico británico John Ambrose Fleming a principios del siglo pasado, para muchos la invención de aquella primera válvula termoiónica supuso a la sazón el inicio de la era electrónica.

En un principio el cátodo de esta válvula estaba formado por un hilo metálico resistente, al cual se le han soldado dos hilos de un material buen conductor los cuales salen al exterior a través del cristal. Justo frente a él, dentro de la ampolla, se ha colocado una placa metálica, la cual también tiene soldado un hilo conductor que sale al exterior a través del vidrio de la ampolla.

El hilo metálico resistente se llama filamento y, solo en este caso como veremos posteriormente, hace las veces de cátodo del diodo. Es decir, en este tipo de válvula primeriza el propio filamento también es el cátodo. Por este motivo, a esta clase particular de diodo termoiónico se le conoce como diodo de caldeo directo.

La placa metálica, conocida simplemente como "placa", es el ánodo del diodo. A todo el conjunto, incluida la ampolla de vidrio, se le llama diodo termoiónico o de vacío.

Podemos ver el símbolo electrónico utilizado para representar a este diodo en la ilustración que incluimos.

Mas adelante hablaremos de otro tipo de válvula diodo perfeccionada con respecto a esta, la cual está exenta de los inconvenientes que sí tenía la primera debido a que usaba el propio filamento de cátodo, propiciando así la aparición de ciertos problemas si no se tomaban las debidas precauciones.

Tal y como hemos mencionado en la introducción, a los electrodos del diodo termoiónico se les llama de idéntica forma que a los del diodo semiconductor.

Esto es así debido a que sus comportamientos son del todo similares en uno y en otro caso como vamos a ver a continuación.


COMPORTAMIENTO DEL DIODO DE VACÍO

Efectivamente, el diodo termoiónico realiza la misma función que un diodo de cristal o semiconductor. Por ejemplo, puede funcionar como detector, ya que solo permite el paso de corriente en un sentido.

Para comprobar esto vamos a construir un pequeño circuito con solo unos pocos componentes. Montaremos una válvula diodo junto a un amperímetro de corriente contínua con la configuración que vemos en la figura adjunta.

Al filamento (cátodo) le conectaremos una batería capaz de calentarlo lo suficiente para producir en él el efecto termoiónico, y de esta manera que sea capaz de emitir electrones abundantemente (generalmente ha de ponerse al rojo vivo).

Entre uno de los terminales del cátodo o filamento y la placa del diodo, conectaremos otra batería en serie con el amperímetro.

En principio, el borne positivo de esta otra batería, la cual es de una tensión elevada (por lo general mayor de 100 voltios), lo conectaremos a la placa a través de dicho amperímetro. El negativo de la batería lo conectaremos por su parte a uno cualquiera de los terminales del cátodo.

Con esta batería así conectada, la placa resulta ser positiva con respecto al cátodo y produce una irresistible atracción sobre los electrones que salen de este último. El cátodo, por lo tanto, cede estos electrones a la placa a través del vacío creado dentro de la ampolla, sin que absolutamente nada se interponga en su camino.

A propósito de lo anterior cabe decir aquí que es lógico que, para que el diodo funcione correctamente, se tenga que efectuar el vacio en su interior, ya que de lo contrario las propias moléculas de aire constituirían un verdadero obstáculo para los electrones viajeros que intentasen alcanzar la placa positiva.

Si no se hiciera el vacío dentro de la ampolla de cristal los electrones bombardearían a las moléculas de aire de su interior y se verían seriamente frenados. Incluso su trayectoria se desviaría y se impediría que llegaran a su destino, la placa o ánodo, por lo que el funcionamiento del diodo sería defectuoso.

Sigamos adelante una vez aclarado el punto. De la manera que anteriormente hemos explicado, se establece un flujo de electrones que va del cátodo a la placa por dentro de la válvula y desde la placa al cátodo por el circuito exterior a esta, atravesando amperímetro y batería para acabar de nuevo en su ubicación original.

Podemos comprobar la existencia de esta corriente eléctrica con solo mirar el amperímetro, el cual da buena cuenta de ella mediante el desplazamiento de su aguja.

Ahora vamos a invertir la polaridad de esta batería. Su polo negativo lo conectaremos a la placa de la válvula a través del amperímetro, mientras que su polo positivo lo vamos a conectar a uno de los extremos del cátodo (ver ilustración).

En estas circunstancias la placa adquiere polaridad negativa con respecto al cátodo. Los electrones que logran salir despedidos del cátodo debido al efecto termoiónico vuelven otra vez a él, ya que son repelidos por la carga negativa que la placa tiene con respecto al cátodo, al tiempo que son atraidos por este último al tener carga positiva con respecto a la placa. Los electrones no pueden en esta ocasión atravesar el vacío que separa cátodo y ánodo.

Por este motivo, ahora el amperímetro no marcará el paso de absolutamente ninguna corriente eléctrica, permaneciendo su aguja a la izquierda, señalando al cero. La intensidad de corriente a través del circuito es ahora completamente nula.

Con esto queda demostrado que el diodo termoiónico conduce interiormente solo en un sentido, desde el cátodo hacia la placa, y solo cuando al primero lo polarizamos negativamente con respecto a la segunda, que tendrá que ser positiva.


ALGUNAS CONSIDERACIONES

Cuando polarizamos al diodo de vacío de forma inversa, haciendo la placa negativa con respecto al cátodo, los electrones que salen de este último vuelven a él debido al campo eléctrico creado entre los dos electrodos. Son repelidos por el potencial negativo de la placa y atraidos por el positivo del cátodo.

En ese momento, el número de electrones que salen del cátodo es igual al número de los que vuelven a él, formándose a su alrededor una verdadera "nube de electrones", donde coexisten tanto los que salen como los que entran. A esta "nube" de cargas negativas se la conoce como "carga espacial" o "carga de espacio".

Son precisamente los electrones de la carga espacial del cátodo los que la placa, cuando es positiva con respecto a aquél, atrae hacia ella para producir la corriente a través del diodo. A esta corriente, que pudimos medir con el amperímetro en el experimento anterior, se le conoce como corriente de placa.

Otro punto importante a tener en cuenta es que, a los diodos de caldeo directo, es decir, los que hemos estudiado hasta el momento, había que calentarle el filamento con corriente continua, ya que al ejercer este al mismo tiempo de cátodo, el rizado de la corriente alterna podía transmitirse a la corriente de placa, provocando un zumbido indeseable.

Para evitar este efecto y hacer al cátodo del diodo completamente independiente de su filamento, aparecieron los llamados diodos de caldeo indirecto.

En estos últimos tubos de vacío, el filamento queda recubierto por un pequeño cilindro metálico que resulta ser el verdadero cátodo. Este cilindro es calentado por el filamento, sin que exista ningún tipo de contacto entre ellos, y es el encargado de provocar la emisión de electrones. En este caso el filamento única y exclusivamente ejerce la función de elemento calefactor.

El funcionamiento del diodo termoiónico de caldeo indirecto es mucho más seguro y fiable que el de su predecesor. En la ilustración adjunta puedes ver su símbolo.

Aquí vamos a parar por el momento el estudio de estas válvulas termoiónicas. Como ves, la profundidad en la que nos hemos zambullido es escasa, ya que creemos que debido a que su uso en la actualidad no es masivo, un estudio más profundo de estos componentes electrónicos carecería de interés práctico.

Hasta la próxima, nos vemos aquí en Radioelectronica.es, tu punto de encuentro.

 

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +