Acceso



Registro de usuarios
Otros Temas Interesantes
Contáctenos
Teoría
Estabilizadores de tensión con diodos zener

Los diodos han invadido casi todas las ramas y facetas de la electrónica. Pero eso no acaba ahí. A dia de hoy, rara es la persona que no ha oido hablar del diodo, a pesar de que no todos saben lo que es en realidad y como funciona. Esto quizás se deba a la "invasión" de los diodos LED a casi todos los niveles.

Sin embargo, hoy no vamos a hablarte de este tipo de diodo sino de otro quizás menos conocido denominado diodo "zener".

El diodo zener se usa casi de forma sistemática en la mayoría de las fuentes de alimentación que incorporan los dispositivos electrónicos actuales y como componente integrado en chips reguladores de tensión.

Gracias a él podemos conseguir una tensión estable, a pesar de que por diferentes causas dicha tensión pueda ver alterado su valor, y usarla para alimentar circuitos electrónicos sensibles, o como referencia para conseguir fuentes de tensión estabilizada capaces de alimentar equipos de alto consumo.

Hoy vamos a enseñarte a usar el diodo zener en la situación más sencilla posible y a la vez más típica, o sea, como estabilizador de tensión con resistencia limitadora. No te preocupes que no será dificil.

Leer más...
Noticias
Circuitos electrónicos comentados

Inauguramos una nueva sección en nuestro canal de Youtube a la que hemos llamado "Circuitos Electrónicos Comentados".

En la misma tendrán cabida aquellos circuitos que, a nuestro juicio, sean interesantes ya sea porque contienen un determinado componente electrónico que queramos analizar, porque mediante él se realice una determinada acción y estemos interesados en saber como funciona, porque despierte el interés del usuario aficionado a los montajes o simplemente por razones didácticas y pedagógicas.

Clica en "Leer completo..." para saber más.

Leer más...
Radioaficionados
Receptor a reacción para Onda Corta (II)

Continuamos con la segunda parte de este interesante tema que trata de la construcción de un sensible receptor regenerativo con escucha en altavoz, constituido por solo dos componentes activos; 1 transistor y 1 circuito integrado.

A pesar de incorporar tan pocos componentes estamos seguros que, aquellos que se aventuren a construirlo, obtendrán una tremenda satisfacción cuando al ponerlo en marcha puedan oir una gran cantidad de emisoras, incluyendo aquellas de paises muy alejados del nuestro.

Una vez que llevemos a la práctica este circuito, montando en su correspondiente placa de circuito impreso todos los componentes, podremos instalarlo en el interior de una caja a la que habremos añadido los controles necesarios para su uso y manejo en las mejores condiciones, e incluso fabricarle una bonita carátula, lo que le dará un excelente aspecto.

El circuito puede alimentarse con pilas corrientes ya que su consumo ciertamente es muy bajo. De esta manera tendremos la oportunidad de llevarlo con nosotros a cualquier parte y lo convertiremos en un equipo portable, aunque si pensamos usarlo únicamente en casa quizás sea mejor incorporarle una pequeña fuente de alimentación para conectarlo a la red de distribución eléctrica.

En el artículo anterior ya explicamos el principio de la "reacción" o "regeneración" de señales de alta frecuencia. No obstante, aún no hemos dicho nada sobre el funcionamiento detallado de nuestro receptor. Vayamos al grano entonces.

Leer más...
Miscelanea
Tira a matar - Juego de reflejos

¿Con que rapidez responde tu cuerpo a los impulsos externos?. ¿Cuanto tiempo necesitarías para reaccionar ante un peligro inminente?. Si oyes un disparo cercano ¿tus reflejos te hacen "salirte del pellejo"?.

Para poner a prueba la rapidez de respuesta a tus estímulos nerviosos hemos ideado un pequeño circuito con el que podrás medirte en este aspecto con otra persona, y de paso cultivar la faceta "reflexológica" del ser humano. Se trata de algo así como un duelo, lógicamente sin pistolas y sin balas pero eso si, al ser del todo electrónico, con botones y con luces.

Una vez construido el dispositivo se dispondrán dos botones de mayor o menor tamaño, los cuales accionarán sendos pulsadores conectados a nuestro circuito. Al oir una señal, los dos participantes se apresurarán a pulsar su correspondiente botón.

El más rápido de los dos se llevará el gato al agua y ganará el juego. Su victoria quedará fehacientemente constatada porque la luz que le corresponde indicará ese hecho.

Comenzamos con esta reseña una nueva categoría de artículos a la que llamaremos "Miscelánea", en la que tendrán cabida una amplia variedad de temas con multitud de contenidos. Esperamos que esta novedad sea de tu agrado.

Leer más...
Práctica
El electroscopio

Llegó la hora de realizar nuestra primera práctica electrónica. Una vez que hemos estudiado la electricidad estática estaría bien ver los efectos que produce esta mediante un artilugio construido por nosotros mismos.

En este artículo vamos a explicar que es un electroscopio y además vamos a fabricar uno con materiales muy comunes a practicamente costo cero. Siendo un instrumento sumamente fácil y económico de construir, con él podremos ver los efectos de la electricidad estática estudiados en el artículo anterior.

William Gilbert (1544-1603), médico y físico inglés, fué la persona que construyó por primera vez un electroscopio para realizar experimentos con cargas electrostáticas. Acérrimo defensor de la teoría copernicana, sus mayores aportaciones a la ciencia tratan sobre electricidad y magnetismo. Al mostrar que el hierro a altas temperaturas (al rojo) no presenta alteraciones magnéticas, se adelantó a los modernos descubrimientos de Curie. Aunque actualmente el instrumento inventado por Gilbert no es más que una pieza de museo, existiendo herramientas muchísimo mas modernas para estos menesteres, resulta muy instructiva su construcción. Prepárate pués para empezar a experimentar con la electricidad estática.

Leer más...
Teoría
Las ondas (IV)

En el artículo anterior vimos la relación que existe entre la frecuencia, la velocidad y la longitud de onda de un movimiento ondulatorio determinado. Es cierto que la velocidad de un movimiento ondulatorio la podemos determinar a partir de su longitud de onda y de su frecuencia, pero no es menos cierto que dicha velocidad no depende proporcionalmente de esos parámetros. Lo que intentamos expresar es que, dentro de un determinado tipo de ondas (por ejemplo las que engloban los sonidos audibles), su velocidad no aumenta cuando aumenta su frecuencia o su longitud de onda, sino que permanece mas o menos estable, y esto es fácil de entender porque al aumentar la frecuencia disminuye su longitud de onda y viceversa, y la velocidad -recordemos- es el resultado del producto de ambos factores (V = F · λ).

Sin embargo, sabemos que existen otra clase de ondas muchísimo más rápidas que los sonidos audibles. Se trata de ondas que tienen la facultad de viajar a la velocidad de la luz, unos 300.000 kilómetros por segundo. ¿Cual es la diferencia entre estos tipos de ondas para que la velocidad sea tan dispar entre ellas? ¿Como se hace para lograr el "milagro" de que una onda sonora, que solo viaja a poco mas de 340 metros por segundo, la podamos oir en todo el globo terraqueo prácticamente al mismo tiempo? Las respuestas las tienes a continuación.

Leer más...
Noticias
Videotutorial del calculador para Ebay

Para aquellos que nos han trasladado sus consultas relativas a las dudas con el manejo de nuestro calculador de precios y comisiones de venta para Ebay España, aquí tenéis este videotutorial en HD mediante el cual estamos seguros que vais a despejar todas vuestras lagunas.

Esperamos con esto ayudaros con vuestras ventas a través de Ebay España, seáis particularesvendedores profesionales.

Leer más...

El puente de Wien (II)

Segundo y definitivo artículo sobre este particular circuito electrónico.

Una vez que hemos analizado a fondo el puente de Wheatstone en el post anterior, el siguiente paso es abordar de lleno el funcionamiento y los detalles del puente que le ha dado nombre a estos artículos, es decir, el puente de Wien.

Si aún no has leido el primero te aconsejamos que lo hagas antes de abordar este, ya que en aquel se dan las pautas y se sientan las bases necesarias para llegar a entender el funcionamiento de este circuito.

Allí vimos como conseguir equilibrar el puente eligiendo apropiadamente el valor de las resistencias que lo forman, usando una fuente de corriente continua. También pudimos comprobar que el puente de Wheatstone puede funcionar y equilibrarse además con una fuente de corriente alterna.

Partiendo de este último detalle, vamos a continuar ahora estudiando como es posible llevar al equilibrio a este nuevo puente, el puente de Wien. Pasa dentro, por favor.

Como es fácil de observar, existe una clara diferencia entre los dos puentes tratados; a la resistencia R1 se le ha añadido un condensador en serie (C1) y a la R2 uno en paralelo (C2). ¿Que efecto tiene esto en el circuito?.

El primero y más obvio es que este nuevo puente nunca va a poder equilibrarse con una corriente continua, ya que el condensador marcado como C1 va a impedir que esta circule por la rama C1-R1-R2, aun cuando por la otra rama (R3-R4) si que pueda circular dicha corriente. Esto va a provocar que aunque en la unión de R3 con R4 si obtengamos una determinada caida de tensión en la unión de R1 con R2 no habrá ninguna, ya que C1 bloqueará la corriente continua, con lo que el puente siempre estará desequilibrado para este tipo de corrientes.

Por consiguiente, el puente de Wien funcionará solo y exclusivamente con señales alternas. Básicamente, su uso se centra en el campo de las medidas de capacidades asociadas a resistencias, filtros pasabanda y osciladores. Veamos ahora cual es la condición general de equilbrio de este tipo de puente.

EL PUENTE DE WIEN EQUILIBRADO
Recordemos primero la configuración del circuito del puente de Wheatstone, estudiado en el artículo anterior, y su condición general de equilibrio. El esquema es el siguiente:

Una característica fundamental de este tipo de puente es que usa exclusivamente resistencias puras, es decir, no incluye componentes reactivos como bobinas o condensadores. Por lo tanto, su condición general de equilibrio puede expresarse mediante una simple proporción aritmética, tal y como vimos en el artículo anterior, usando el valor de las resistencias que lo forman:

Sin embargo, el puente de Wien no solo se compone de resistencias, sino que incorpora una combinación de estas con condensadores. Concretamente incluye uno en serie con R1 y otro en paralelo con R2. Mira la siguiente figura.

Por lo tanto, ya no podremos usar el término "resistencia" para referirnos a la oposición que ejerce al paso de la corriente eléctrica cada una de estas ramas. Tendremos que usar el término "impedancia", ya que conviven juntas una resistencia pura y la "reactancia capacitiva" de cada condensador. Para que lo tengas más claro mira la siguiente ilustración.

Hemos llamado "Z1" a la impedancia formada por R1 en serie con C1 y "Z2" a la que forma R2 en paralelo con C2. Es necesario por tanto transformar la proporción que nos indica la condición general de equilibrio en el puente de Wheatstone, sustituyendo en la primera razón R por Z tal y como indicamos en la siguiente fórmula, y teniendo presente que Z1 es la impedancia de la red serie R1-C1 y Z2 es la impedancia de la red en paralelo de R2 con C2.

Esta es la condición general de equilibrio del puente de Wien para corrientes alternas. Pero todavía queda mucha tela que cortar.

EL FACTOR "FRECUENCIA"
Al incorporar componentes reactivos en su circuito, el equilibrio del puente de Wien no solo depende del valor de sus componentes electrónicos (resistencias y condensadores), sino también del valor de la frecuencia de la señal de corriente alterna que se le aplique. La cosa se complica un poco.

Sabido es que la oposición que presenta un condensador al paso de la corriente alterna (reactancia capacitiva) depende, además de la capacidad del condensador, de la frecuencia de esta. Por lo tanto, para unos valores concretos de sus componentes, el puente de Wien estará equilibrado solo para una determinada frecuencia de la señal aplicada, ya que con la alteración de esta última también se alterarán las impedancias de las ramas Z1 y Z2, cosa que no ocurría en el puente de Wheatstone al estar todas sus ramas constituidas por resistencias puras no dependientes de la frecuencia.

Este aspecto es lo que hace a este tipo de puente interesante para determinadas aplicaciones ya que, en cierto modo, puede comportarse como un circuito resonante. Como ya comentamos en el primer artículo, William Hewlett lo usó de esa forma para construir un generador de señales de B.F. de precisión, el que fuera famoso modelo HP-200A de la firma "Hewlett-Packard".

Resumiendo, tenemos que tener claro que el equilibrio del puente de Wien se consigue única y exclusivamente para una señal alterna cuya frecuencia estará determinada por el valor de los componentes de las ramas reactivas Z1 y Z2. Suponiendo que en estas dos ramas hagamos que R1 sea del mismo valor que R2 (R) y que C1 sea del mismo valor que C2 (C), podremos calcular dicha frecuencia (F) mediante la siguiente expresión:

Posteriormente, mediante la proporción correcta de los valores de las resistencias R3 y R4, que no influyen para nada en la frecuencia de trabajo, podremos controlar el equilibrio del puente.

Aunque sea de forma sucinta nos gustaría exponer como se usa el puente de Wien en su configuración como oscilador de B.F. Pero antes vamos a hablar un poco del componente electrónico que permite llevarlo a cabo de la manera mas clásica.

EL AMPLIFICADOR OPERACIONAL
Tipicamente se utiliza un amplificador operacional como "motor" del oscilador en puente de Wien. El amplificador operacional es un circuito integrado compuesto por una etapa diferencial con una entrada inversora (-) y otra no-inversora (+), seguida de un amplificador de altísima ganancia y, para finalizar, una etapa de salida de baja impedancia. Conocido también como OP-AMP, su símbolo es el siguiente.

Lo puso a la venta por primera vez en el año 1964 la compañia norteamericana Fairchild Semiconductor al "módico" precio de 300 dólares. Se trataba del µA702 y asombrosamente tuvo una buena acogida a pesar de sus limitadas prestaciones, según palabras de su propio creador Robert John Widlar. No obstante, el µA702 no estaba completamente integrado en silicio, es decir, usaba tecnología híbrida.

No sería hasta un año después cuando se lanzó al mercado el que si podemos considerar primer amplificador operacional de la historia, al que se le podía llamar con todas las de la ley "circuito integrado" al estar construido enteramente en una oblea o pastilla de silicio (monolítico). En esta ocasión Fairchild lo llamó µA709 y tuvo un enorme exito aunque aún presentaba algunos inconvenientes menores. En seguida se apuntaron al carro de la fabricación diferentes empresas como Texas Instruments o SGS.

Por fin en el año 1968 vió la luz el archiconocido µA741, con muchas mejoras respecto a su predecesor. El µA741 se convirtió en el "rey" de los operacionales y ostentó ese título durante 40 años. Aún hoy se sigue fabricando, aunque ya no se recomienda su uso en los equipos actuales al haber aparecido amplificadores operacionales con características muy superiores. No obstante y de forma aplastante, el µA741 marcó una época en la que sus prestaciones y usabilidad casi no se podían creer por aquellas fechas.

En próximos artículos hablaremos mas profundamente sobre el amplificador operacional y resaltaremos sus características, prestaciones y posibilidades. Por ahora, basta con decir que este componente electrónico puede configurarse para que funcione como amplificador, mezclador, oscilador, filtro activo, compresor, limitador y casi como cualquier circuito que podamos imaginar.

EL PUENTE DE WIEN COMO OSCILADOR
La configuración básica del puente de Wien como oscilador senoidal de baja frecuencia es la que representamos a continuación.

Como podemos observar, la entrada del puente está conectada por un lado a la salida amplificada del OP-AMP y por el otro a masa, y su salida está atacando a la entrada diferencial del operacional. Pero para ver con mas claridad el funcionamiento del circuito vamos a cambiar el punto de vista de los componentes, como hacemos habitualmente, aunque el esquema representado anteriormente no cambiará en nada. Mira la siguiente ilustración.

Si te fijas, ya lo hemos dicho antes, la parte que controla la frecuencia a la que "resuena" el puente son las dos ramas que contienen condensadores (R1-C1 y R2-C2). Pero esto tenemos que verlo más claro aún. Para ello, vamos a separarlas del resto del circuito y a pasarles un pequeño test.

Primero vamos a centrarnos en R1 y C1 eliminando el condensador C2 para que no influya en los resultados, aunque respetando la presencia de R2 para que "cargue" la salida de forma correcta. Conectaremos a su "entrada" un generador de señales cuya frecuencia iremos modificando en pequeños pasos. Además, conectaremos un osciloscopio que nos indicará la amplitud de la señal a la "salida" para cada valor de la frecuencia testeada. Ambos valores los iremos anotando y "graficando" cuidadosamente en un sistema de coordenadas cartesianas.

Al final, con algo de paciencia y tiempo suficiente, obtendremos un gráfico parecido al que incluimos seguidamente, teniendo en cuenta que en el eje "X" de la abscisa (el horizontal) hemos representado la frecuencia de la señal y en el "Y" de la ordenada (el vertical) el nivel de amplitud registrado con el osciloscopio.

La explicación de por qué ocurre esto es muy sencilla. Para frecuencias bajas el condensador C1 ofrece una muy alta impedancia que sumada con R1 no deja pasar la señal. Conforme la frecuencia va subiendo, C1 va bajando su impedancia y por lo tanto va dejando pasar más cantidad de señal, hasta que llega un momento en que la frecuencia adquiere un valor tal que la impedancia del condensador es despreciable con respecto a las resistencias del circuito. A partir de ese momento se obtiene una respuesta practicamente plana.

Para tu información, esta prueba también puede hacerse de manera muy rápida y sencilla con un instrumento llamado "generador de barrido", el cual va variando la frecuencia de la señal de forma automática entre los márgenes que queramos. En el osciloscopio, conectado a la salida, veremos cómoda y claramente el gráfico anterior.

Todavía más. Si tienes el software Multisim dispondrás de un instrumento que incorpora tanto el generador de barrido como el osciloscopio. Se trata del llamado "Bode Plotter". Con él podremos visualizar, casi sin molestarnos, la curva de respuesta de un determinado circuito pasivo o activo.

Vamos con la red formada por R2 y C2. Para testearla eliminaremos C1 que es el componente reactivo que sobra ahora, o sea el que influye sobre la frecuencia de la señal, y dejaremos en su sitio R1. El circuito quedaría de la siguiente manera.

Siguiendo los mismos pasos que en el ejemplo anterior, en esta ocasión la curva de respuesta que obtenemos es la siguiente.

Como puedes observar, el gráfico obtenido es justamente el opuesto al anterior y también tiene su explicación. Para frecuencias muy bajas el condensador C2 no influye para nada sobre la señal ya que su impedancia es muy alta en comparación con el valor de las resistencias, por lo que la respuesta del circuito es plana hasta la mitad del gráfico.

Pero conforme la frecuencia va subiendo la impedancia de C2 se va haciendo cada vez menor. Por este motivo, en un determinado instante la curva comienza a descender, hasta el momento en que esta impedancia llega a hacerse practicamente nula y la curva tiende a cero debido a que el condensador se ha convertido en un verdadero "contocircuito" para la señal.

Analicemos ahora la red completa del puente de Wien. Fíjate en la siguiente imagen.

Está claro que la señal debe atravesar primero la red serie R1-C1 para posteriormente darse de bruces con la red en paralelo de R2 y C2. Por lo tanto, en esta ocasión estará expuesta a los efectos de ambas redes. La curva respuesta que mostrará el osciloscopio para este circuito será la siguiente.

Los efectos que ejercen ambas redes por separado se han fusionado. Por ello, la nueva curva respuesta que obtenemos es la superposición de las dos anteriores.

Al visualizar esta última curva podemos entender el efecto "circuito resonante" del puente de Wien. Para una determinada frecuencia la oposición que ofrece es mínima ya que la amplitud de la señal a su salida es máxima, mientras que para frecuencias inferiores y superiores a la referida su oposición va aumentando paulatinamente hasta practicamente llegar a anular la señal.

Además, ahora también resulta sencillo entender el funcionamiento del oscilador en puente de Wien. La salida amplificada por el OP-AMP se aplica a la entrada del puente. Como este solo deja pasar de forma clara una frecuencia determinada, esa señal es la que nos encontraremos a la salida de la red R1-C1 y R2-C2 y, por lo tanto, en la entrada no inversora (+) del operacional. El circuito entra así en oscilación permanente.

Para controlar el nivel de la señal y evitar que exista recorte de la forma de onda, ajustaremos el valor de las resistencias R3 y R4 de manera que la realimentación negativa que introducen a través de la entrada inversora (-) impida que ocurra esto.

CURVA RESPUESTA DEL PUENTE ORIGINAL
Para terminar, la pregunta que debemos hacernos es ¿que forma tendría la curva respuesta del puente de Wien trabajando como tal?, es decir, en su configuración original. Para poder llevar a cabo este último test y visualizar la mencionada curva deberemos conectar los instrumentos con el puente de la siguiente manera.

Y la curva respuesta que obtendremos es la que representamos a continuación.

Como podemos apreciar, cuando el puente alcanza el equilibrio no se obtiene a la salida ningún tipo de señal, siendo la amplitud de esta cero. Sin embargo, a un lado y a otro de la frecuencia para la que ha sido diseñado se produce el desequilibrio del puente, entregando un nivel de señal mas elevado conforme dicha frecuencia se aleja del valor correcto.

Hasta aquí los artículos dedicados al puente de Wien. No te pierdas nuestro próximo artículo de la sección "Radioaficionados", en el que publicaremos un sencillo e interesante montaje basado en este circuito.

Te esperamos de nuevo aquí, en Radioelectronica.es, tu punto de encuentro.

 
C O M E N T A R I O S   
wien con valores de resistencias y capacitores diferentes.

#1 marioooooooooo » 16-05-2019 03:14

tu informacion es muy buena, pero que pasa cuando tenemos ejercicios a rersolver cuando R1 es diferente de R2 y C1 es diferente de C2. Gracias.

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.

Esta web utiliza cookies. Puedes ver nuestra política de cookies aquí. Si continuas navegando estás aceptándola.
Política de cookies +