Acceso



Registro de usuarios
Contáctenos
Teoría
El transformador

Corría el año 1851 cuando el físico alemán Heinrich Daniel Ruhmkorff ideó la bobina que lleva su nombre. Se trataba de un generador que permitía producir tensiones elevadísimas, del orden de decenas de miles de voltios, a partir de la corriente continua de una batería. Con ello se logró conseguir la fuente de tensión necesaria para crear diferentes dispositivos que posteriormente traerían grandes beneficios para la humanidad.

La bobina de Ruhmkorff fué utilizada, por ejemplo, por Heinrich Rudolf Hertz para la realización de sus experimentos con ondas electromagnéticas, lo que significaría los inicios de la radio. También comenzó a utilizarse en los equipos de rayos X como generador electrovoltáico de alta tensión y en los equipos telegráficos de la época. Además, la invención de Ruhmkorff se utilizó en investigaciones relacionadas con diferentes ramas de la física y de la química.

En realidad, Heinrich Daniel Ruhmkorff lo que diseñó fué el primer transformador eléctrico, ya que de lo que se trataba era de un bobinado primario con unas pocas espiras de hilo relativamente grueso por el que se hacía circular una corriente continua pulsante y de un devanado secundario con muchísimas espiras más que el primario y realizado con hilo mas fino. Por lo tanto, Ruhmkorff tuvo el privilegio de fabricar el primer transformador elevador de la historia de la humanidad. ¿Quieres seguir aprendiendo cosas relacionadas con los transformadores? Sigue leyendo, por favor.

Leer más...
Otros Temas Interesantes
Noticias
Hazte "PREMIUM" por un AÑO por solo 10 €

¿Conoces nuestro canal de Youtube?

Nuestro canal en Youtube, al que puedes acceder mediante el link https://www.youtube.com/@Radioelectronica-Spain, a fecha de hoy ya ha superado los 45.000 seguidores en todo el mundo. No son muchos, es verdad, y tampoco pretendemos presumir de ello. Sin embargo, si que son muchos los comentarios y correos electrónicos que recibimos con preguntas y dudas que surgen a raíz de ver los videos publicados.

Nuestro "Curso de electrónica básica" ha tenido una muy buena aceptación entre los usuarios. Hasta el momento estamos ofreciendo siete capítulos, y aunque en los mismos se toca lo más elemental de la electrónica y sin habernos metido aún en mucha hondura, todos los días recibimos correos electrónicos pidiéndonos que le despejemos una duda o que le aclaremos un punto determinado relativo al tema tratado.

Te comunicamos que tenemos muy buenas noticias para todas las personas interesadas.

Clica en LEER COMPLETO para saber todo lo que te podemos ofrecer sobre este asunto.

Leer más...
Radioaficionados
Preamplificador de micro para emisoras

De todos es sabido la cantidad de micrófonos preamplificados que invaden el mercado destinado a la C.B. (Banda Ciudadana o 27 MHz.). Unos los vemos en versión "de sobremesa" y otros en versión "de mano". Algunos de estos micrófonos dicen poseer un "compresor" para de esta manera conseguir una modulación profunda que permita obtener el máximo rendimiento de nuestra emisora. Otros publican su producto como provisto de un estupendo "limitador de audio" para así obtener el mismo o parecido resultado.

Sin embargo, son pocos los que saben que los compresores o limitadores de audio incorporados en los micrófonos son accesorios que aportan muy poco a la mejora del rendimiento de las emisoras de radioaficionado, sobre todo si se conectan a equipos de cierta calidad técnica como ocurre con la Superstar 3900. ¿Te sorprende esta afirmación? La pregunta ahora es... ¿Sabes por qué? Sigue leyendo este artículo y te enterarás no solo de la respuesta a esta pregunta, sino también de como hacer un preamplificador de audio para micrófono verdaderamente eficaz, diseñado con solo un par de transistores y sin embargo dotado de unas características excepcionales, y como incorporárselo a tu emisora de manera que le subas el rendimiento hasta el máximo posible.

Leer más...
Miscelanea
Sencillo VU-Meter a diodos LED

Lejos quedan aquellos tiempos en los que todos los medidores, y al decir todos me refiero a TODOS, estaban construidos mediante un galvanómetro y la lectura se realizaba con una aguja que parecía deslizarse al recorrer una escala graduada.

A decir verdad, para aquellos que en cierta manera somos de "la vieja escuela", los referidos medidores, midieran lo que midieran, tenían un encanto muy especial y podría decirse que sentimos "morriña" cuando los recordamos, como diría un gallego al estar lejos de su tierra y escuchar el sonido de una gaita.

Pero llegaron los diodos LED y se hizo la luz. Desde entonces, son muchos y muy variados los VU-Meters, vúmetros o medidores de unidades "VU" (del inglés Volume Unit) que se han desarrollado incorporando este componente electrónico, sobre todo usando la tecnología de la integración.

Pero en este artículo no vamos a publicar la información técnica para construir uno de estos instrumentos con los clásicos circuitos integrados UAA170 o UAA180 ni con cualquier otro. Tampoco vamos a enseñarte a conectar esas "barritas" LED con diferentes diseños. ¡Con ellas practicamente lo tienes todo hecho!.

En este artículo vamos a enseñarte como construir un VU-Meter LED con componentes discretos. ¡Dale ya al "Leer completo..." para saber más!.

Leer más...
Práctica
El teléfono yogur y su versión electrónica

Es muy probable que cuando éramos niños hayamos jugado alguna que otra vez con el llamado "teléfono yogur", probablemente fabricado por nosotros mismos ya que su construcción no ofrece prácticamente ninguna dificultad.

Con solo un par de recipientes de plástico vacíos, que casi siempre se conseguían una vez que habíamos consumido los yogures (de ahí el nombre por el que se le conoce normalmente), unos metros de hilo suficientemente resistente y poco más, teníamos un juguete con el que pasábamos horas y horas de ocio y diversión.

Mientras uno de nosotros aproximaba el bote de yogur a su oreja el otro lo hacía con el que le correspondía a su boca y comenzaba la "transmisión" del mensaje. Y aunque la distancia entre los dos interlocutores no podía exceder de algunos metros, la transmisión de la "fonía" que se conseguía con este artilugio, aunque débil, era relativamente buena.

La verdad es que aquellos eran otros tiempos. Nos divertíamos con cualquier cosa. Y aunque hoy este juguete quizás le siga llamando la atención a los más pequeños, no hay que olvidar que vivimos en la era de la electrónica y casi todos esperamos algo más. De ese "algo más" hablamos en este artículo. Vamos a presentarte la versión electrónica del teléfono yogur. ¿Quieres ver de que se trata?. ¡Adelante!.

Leer más...
Teoría
Las válvulas de vacío VII

Séptimo artículo dedicado a las válvulas termoiónicas. Tocaremos en esta ocasión el receptor a reacción, sin lugar a dudas el preferido por los radioaficionados en la época en que vieron la luz las válvulas de vacío. Con una sensibilidad extraordinaria, la única pega de este receptor era su limitada selectividad si lo comparamos con el superheterodino.

Sin embargo, debido a la sencillez de montaje y bajo presupuesto, todo aquel que hacía sus pinitos en la electrónica por aquella época se aventuraba a construir uno de estos equipos.

Podemos asegurar que aquel que acababa de construir un receptor a reacción con exito ya nunca sería capaz de desligarse de la radio durante toda su vida, acumulando tantas ganas e ilusión que esto le impulsaba a acometer montajes más complejos y sofisticados.

Aunque ya pasó el apogeo de estos antiguos componentes electrónicos, el estudio del receptor a reacción con válvulas termoiónicas nos servirá para entender los del mismo tipo que podremos construir a transistores, e incluso en artículos posteriores ahondar en el funcionamiento de un modelo de receptor simple aún más avanzado utilizable para ondas cortas, el receptor a super-reacción. Por estas razones, no puedes dejar de leer este artículo.

Leer más...
Noticias
Curso de Radio Maymo COMPLETO

Aquí tenéis el que fue famoso curso de Radio y Televisión creado por Fernando Maymo hace ya bastantes años, con todos sus cuadernos conteniendo la información original al completo.

En su momento, este curso de Radio y Televisión fue muy popular y tuvo una gran aceptación entre las personas interesadas por la electrónica, consiguiendo un gran éxito por los novedosos métodos pedagógicos usados por su autor.

Aunque desde el punto de vista estrictamente pragmático y a dia de hoy dicha información está obsoleta, existe aún un público que muy posiblemente esté interesado en esta obra.

Clica en "Leer completo..." para conocer más detalles.

Leer más...

El puente de Wien (II)

Segundo y definitivo artículo sobre este particular circuito electrónico.

Una vez que hemos analizado a fondo el puente de Wheatstone en el post anterior, el siguiente paso es abordar de lleno el funcionamiento y los detalles del puente que le ha dado nombre a estos artículos, es decir, el puente de Wien.

Si aún no has leido el primero te aconsejamos que lo hagas antes de abordar este, ya que en aquel se dan las pautas y se sientan las bases necesarias para llegar a entender el funcionamiento de este circuito.

Allí vimos como conseguir equilibrar el puente eligiendo apropiadamente el valor de las resistencias que lo forman, usando una fuente de corriente continua. También pudimos comprobar que el puente de Wheatstone puede funcionar y equilibrarse además con una fuente de corriente alterna.

Partiendo de este último detalle, vamos a continuar ahora estudiando como es posible llevar al equilibrio a este nuevo puente, el puente de Wien. Pasa dentro, por favor.

Como es fácil de observar, existe una clara diferencia entre los dos puentes tratados; a la resistencia R1 se le ha añadido un condensador en serie (C1) y a la R2 uno en paralelo (C2). ¿Que efecto tiene esto en el circuito?.

El primero y más obvio es que este nuevo puente nunca va a poder equilibrarse con una corriente continua, ya que el condensador marcado como C1 va a impedir que esta circule por la rama C1-R1-R2, aun cuando por la otra rama (R3-R4) si que pueda circular dicha corriente. Esto va a provocar que aunque en la unión de R3 con R4 si obtengamos una determinada caida de tensión en la unión de R1 con R2 no habrá ninguna, ya que C1 bloqueará la corriente continua, con lo que el puente siempre estará desequilibrado para este tipo de corrientes.

Por consiguiente, el puente de Wien funcionará solo y exclusivamente con señales alternas. Básicamente, su uso se centra en el campo de las medidas de capacidades asociadas a resistencias, filtros pasabanda y osciladores. Veamos ahora cual es la condición general de equilbrio de este tipo de puente.

EL PUENTE DE WIEN EQUILIBRADO
Recordemos primero la configuración del circuito del puente de Wheatstone, estudiado en el artículo anterior, y su condición general de equilibrio. El esquema es el siguiente:

Una característica fundamental de este tipo de puente es que usa exclusivamente resistencias puras, es decir, no incluye componentes reactivos como bobinas o condensadores. Por lo tanto, su condición general de equilibrio puede expresarse mediante una simple proporción aritmética, tal y como vimos en el artículo anterior, usando el valor de las resistencias que lo forman:

Sin embargo, el puente de Wien no solo se compone de resistencias, sino que incorpora una combinación de estas con condensadores. Concretamente incluye uno en serie con R1 y otro en paralelo con R2. Mira la siguiente figura.

Por lo tanto, ya no podremos usar el término "resistencia" para referirnos a la oposición que ejerce al paso de la corriente eléctrica cada una de estas ramas. Tendremos que usar el término "impedancia", ya que conviven juntas una resistencia pura y la "reactancia capacitiva" de cada condensador. Para que lo tengas más claro mira la siguiente ilustración.

Hemos llamado "Z1" a la impedancia formada por R1 en serie con C1 y "Z2" a la que forma R2 en paralelo con C2. Es necesario por tanto transformar la proporción que nos indica la condición general de equilibrio en el puente de Wheatstone, sustituyendo en la primera razón R por Z tal y como indicamos en la siguiente fórmula, y teniendo presente que Z1 es la impedancia de la red serie R1-C1 y Z2 es la impedancia de la red en paralelo de R2 con C2.

Esta es la condición general de equilibrio del puente de Wien para corrientes alternas. Pero todavía queda mucha tela que cortar.

EL FACTOR "FRECUENCIA"
Al incorporar componentes reactivos en su circuito, el equilibrio del puente de Wien no solo depende del valor de sus componentes electrónicos (resistencias y condensadores), sino también del valor de la frecuencia de la señal de corriente alterna que se le aplique. La cosa se complica un poco.

Sabido es que la oposición que presenta un condensador al paso de la corriente alterna (reactancia capacitiva) depende, además de la capacidad del condensador, de la frecuencia de esta. Por lo tanto, para unos valores concretos de sus componentes, el puente de Wien estará equilibrado solo para una determinada frecuencia de la señal aplicada, ya que con la alteración de esta última también se alterarán las impedancias de las ramas Z1 y Z2, cosa que no ocurría en el puente de Wheatstone al estar todas sus ramas constituidas por resistencias puras no dependientes de la frecuencia.

Este aspecto es lo que hace a este tipo de puente interesante para determinadas aplicaciones ya que, en cierto modo, puede comportarse como un circuito resonante. Como ya comentamos en el primer artículo, William Hewlett lo usó de esa forma para construir un generador de señales de B.F. de precisión, el que fuera famoso modelo HP-200A de la firma "Hewlett-Packard".

Resumiendo, tenemos que tener claro que el equilibrio del puente de Wien se consigue única y exclusivamente para una señal alterna cuya frecuencia estará determinada por el valor de los componentes de las ramas reactivas Z1 y Z2. Suponiendo que en estas dos ramas hagamos que R1 sea del mismo valor que R2 (R) y que C1 sea del mismo valor que C2 (C), podremos calcular dicha frecuencia (F) mediante la siguiente expresión:

Posteriormente, mediante la proporción correcta de los valores de las resistencias R3 y R4, que no influyen para nada en la frecuencia de trabajo, podremos controlar el equilibrio del puente.

Aunque sea de forma sucinta nos gustaría exponer como se usa el puente de Wien en su configuración como oscilador de B.F. Pero antes vamos a hablar un poco del componente electrónico que permite llevarlo a cabo de la manera mas clásica.

EL AMPLIFICADOR OPERACIONAL
Tipicamente se utiliza un amplificador operacional como "motor" del oscilador en puente de Wien. El amplificador operacional es un circuito integrado compuesto por una etapa diferencial con una entrada inversora (-) y otra no-inversora (+), seguida de un amplificador de altísima ganancia y, para finalizar, una etapa de salida de baja impedancia. Conocido también como OP-AMP, su símbolo es el siguiente.

Lo puso a la venta por primera vez en el año 1964 la compañia norteamericana Fairchild Semiconductor al "módico" precio de 300 dólares. Se trataba del µA702 y asombrosamente tuvo una buena acogida a pesar de sus limitadas prestaciones, según palabras de su propio creador Robert John Widlar. No obstante, el µA702 no estaba completamente integrado en silicio, es decir, usaba tecnología híbrida.

No sería hasta un año después cuando se lanzó al mercado el que si podemos considerar primer amplificador operacional de la historia, al que se le podía llamar con todas las de la ley "circuito integrado" al estar construido enteramente en una oblea o pastilla de silicio (monolítico). En esta ocasión Fairchild lo llamó µA709 y tuvo un enorme exito aunque aún presentaba algunos inconvenientes menores. En seguida se apuntaron al carro de la fabricación diferentes empresas como Texas Instruments o SGS.

Por fin en el año 1968 vió la luz el archiconocido µA741, con muchas mejoras respecto a su predecesor. El µA741 se convirtió en el "rey" de los operacionales y ostentó ese título durante 40 años. Aún hoy se sigue fabricando, aunque ya no se recomienda su uso en los equipos actuales al haber aparecido amplificadores operacionales con características muy superiores. No obstante y de forma aplastante, el µA741 marcó una época en la que sus prestaciones y usabilidad casi no se podían creer por aquellas fechas.

En próximos artículos hablaremos mas profundamente sobre el amplificador operacional y resaltaremos sus características, prestaciones y posibilidades. Por ahora, basta con decir que este componente electrónico puede configurarse para que funcione como amplificador, mezclador, oscilador, filtro activo, compresor, limitador y casi como cualquier circuito que podamos imaginar.

EL PUENTE DE WIEN COMO OSCILADOR
La configuración básica del puente de Wien como oscilador senoidal de baja frecuencia es la que representamos a continuación.

Como podemos observar, la entrada del puente está conectada por un lado a la salida amplificada del OP-AMP y por el otro a masa, y su salida está atacando a la entrada diferencial del operacional. Pero para ver con mas claridad el funcionamiento del circuito vamos a cambiar el punto de vista de los componentes, como hacemos habitualmente, aunque el esquema representado anteriormente no cambiará en nada. Mira la siguiente ilustración.

Si te fijas, ya lo hemos dicho antes, la parte que controla la frecuencia a la que "resuena" el puente son las dos ramas que contienen condensadores (R1-C1 y R2-C2). Pero esto tenemos que verlo más claro aún. Para ello, vamos a separarlas del resto del circuito y a pasarles un pequeño test.

Primero vamos a centrarnos en R1 y C1 eliminando el condensador C2 para que no influya en los resultados, aunque respetando la presencia de R2 para que "cargue" la salida de forma correcta. Conectaremos a su "entrada" un generador de señales cuya frecuencia iremos modificando en pequeños pasos. Además, conectaremos un osciloscopio que nos indicará la amplitud de la señal a la "salida" para cada valor de la frecuencia testeada. Ambos valores los iremos anotando y "graficando" cuidadosamente en un sistema de coordenadas cartesianas.

Al final, con algo de paciencia y tiempo suficiente, obtendremos un gráfico parecido al que incluimos seguidamente, teniendo en cuenta que en el eje "X" de la abscisa (el horizontal) hemos representado la frecuencia de la señal y en el "Y" de la ordenada (el vertical) el nivel de amplitud registrado con el osciloscopio.

La explicación de por qué ocurre esto es muy sencilla. Para frecuencias bajas el condensador C1 ofrece una muy alta impedancia que sumada con R1 no deja pasar la señal. Conforme la frecuencia va subiendo, C1 va bajando su impedancia y por lo tanto va dejando pasar más cantidad de señal, hasta que llega un momento en que la frecuencia adquiere un valor tal que la impedancia del condensador es despreciable con respecto a las resistencias del circuito. A partir de ese momento se obtiene una respuesta practicamente plana.

Para tu información, esta prueba también puede hacerse de manera muy rápida y sencilla con un instrumento llamado "generador de barrido", el cual va variando la frecuencia de la señal de forma automática entre los márgenes que queramos. En el osciloscopio, conectado a la salida, veremos cómoda y claramente el gráfico anterior.

Todavía más. Si tienes el software Multisim dispondrás de un instrumento que incorpora tanto el generador de barrido como el osciloscopio. Se trata del llamado "Bode Plotter". Con él podremos visualizar, casi sin molestarnos, la curva de respuesta de un determinado circuito pasivo o activo.

Vamos con la red formada por R2 y C2. Para testearla eliminaremos C1 que es el componente reactivo que sobra ahora, o sea el que influye sobre la frecuencia de la señal, y dejaremos en su sitio R1. El circuito quedaría de la siguiente manera.

Siguiendo los mismos pasos que en el ejemplo anterior, en esta ocasión la curva de respuesta que obtenemos es la siguiente.

Como puedes observar, el gráfico obtenido es justamente el opuesto al anterior y también tiene su explicación. Para frecuencias muy bajas el condensador C2 no influye para nada sobre la señal ya que su impedancia es muy alta en comparación con el valor de las resistencias, por lo que la respuesta del circuito es plana hasta la mitad del gráfico.

Pero conforme la frecuencia va subiendo la impedancia de C2 se va haciendo cada vez menor. Por este motivo, en un determinado instante la curva comienza a descender, hasta el momento en que esta impedancia llega a hacerse practicamente nula y la curva tiende a cero debido a que el condensador se ha convertido en un verdadero "contocircuito" para la señal.

Analicemos ahora la red completa del puente de Wien. Fíjate en la siguiente imagen.

Está claro que la señal debe atravesar primero la red serie R1-C1 para posteriormente darse de bruces con la red en paralelo de R2 y C2. Por lo tanto, en esta ocasión estará expuesta a los efectos de ambas redes. La curva respuesta que mostrará el osciloscopio para este circuito será la siguiente.

Los efectos que ejercen ambas redes por separado se han fusionado. Por ello, la nueva curva respuesta que obtenemos es la superposición de las dos anteriores.

Al visualizar esta última curva podemos entender el efecto "circuito resonante" del puente de Wien. Para una determinada frecuencia la oposición que ofrece es mínima ya que la amplitud de la señal a su salida es máxima, mientras que para frecuencias inferiores y superiores a la referida su oposición va aumentando paulatinamente hasta practicamente llegar a anular la señal.

Además, ahora también resulta sencillo entender el funcionamiento del oscilador en puente de Wien. La salida amplificada por el OP-AMP se aplica a la entrada del puente. Como este solo deja pasar de forma clara una frecuencia determinada, esa señal es la que nos encontraremos a la salida de la red R1-C1 y R2-C2 y, por lo tanto, en la entrada no inversora (+) del operacional. El circuito entra así en oscilación permanente.

Para controlar el nivel de la señal y evitar que exista recorte de la forma de onda, ajustaremos el valor de las resistencias R3 y R4 de manera que la realimentación negativa que introducen a través de la entrada inversora (-) impida que ocurra esto.

CURVA RESPUESTA DEL PUENTE ORIGINAL
Para terminar, la pregunta que debemos hacernos es ¿que forma tendría la curva respuesta del puente de Wien trabajando como tal?, es decir, en su configuración original. Para poder llevar a cabo este último test y visualizar la mencionada curva deberemos conectar los instrumentos con el puente de la siguiente manera.

Y la curva respuesta que obtendremos es la que representamos a continuación.

Como podemos apreciar, cuando el puente alcanza el equilibrio no se obtiene a la salida ningún tipo de señal, siendo la amplitud de esta cero. Sin embargo, a un lado y a otro de la frecuencia para la que ha sido diseñado se produce el desequilibrio del puente, entregando un nivel de señal mas elevado conforme dicha frecuencia se aleja del valor correcto.

Hasta aquí los artículos dedicados al puente de Wien. No te pierdas nuestro próximo artículo de la sección "Radioaficionados", en el que publicaremos un sencillo e interesante montaje basado en este circuito.

Te esperamos de nuevo aquí, en Radioelectronica.es, tu punto de encuentro.

 
C O M E N T A R I O S   
wien con valores de resistencias y capacitores diferentes.

#1 marioooooooooo » 16-05-2019 03:14

tu informacion es muy buena, pero que pasa cuando tenemos ejercicios a rersolver cuando R1 es diferente de R2 y C1 es diferente de C2. Gracias.

NO ESTÁS AUTORIZADO PARA COMENTAR
Por favor, regístrate e identifícate en el sistema. Gracias.